Ciclo de seminários do CCMC com Lilian Menezes de Jesus

Processamento convencional, a laser e assistido por campo elétrico de eletrocerâmicas de ACu3Ti4O12 (A = Ca, Bi2/3): (micro)estrutura e propriedades (di)elétricas

Foto: Pequisadora Lilian Menezes de Jesus

Resumo: Materiais da família ACu3Ti4O12 (ACTO) são potenciais candidatos para aplicaçao como dielétricos em capacitores cerâmicos devido aos seus altíssimos valores de constante dielétrica (ε’), podendo chegar a 105 à temperatura ambiente. Entretanto, a origem deste fenômeno, denominado de constante dielétrica gigante (CDG), é ainda uma questão altamente discutida na literatura. Deste modo, para compreender melhor os mecanismos por trás da manifestação desta CDG, neste trabalho os compostos ACu3Ti4O12 (com A = Ca, Bi2/3) foram sintetizados por uma rota baseada no método dos precursores poliméricos, sendo as reações envolvidas durante a síntese investigadas por análise térmica diferencial (ATD) e termogravimentria (TG). O subsequente processamento cerâmico foi realizado via sinterização tanto convencional quanto não convencional, utilizando, neste último caso, sinterização a laser e assistida por campo elétrico. As características (micro)estruturais foram avaliadas por meio de difratometria de raios X (DRX), microscopia eletrônica de varredura (MEV) e espectroscopia de energia dispersiva de raios X (EDX). Já as propriedades (di)elétricas foram estudadas, em nível microestrutural, utilizando espectroscopia de impedância (EI). Destas caracterizações, verificou-se que tanto as características (micro)estruturais quanto as propriedades (di)elétricas são fortemente influenciadas pelas condições de processamento. Neste sentido, demonstramos que estes materiais podem apresentar baixos valores de permissividade à temperatura ambiente (ε’ ~ 10²), típicos da resposta do volume, quando possuem grãos resistivos. Em contrapartida, quando as cerâmicas apresentam grãos semicondutores, valores de constante dielétrica gigante (ε’ >103) são verificados à temperatura ambiente devido à manifestação de efeitos de polarização interfacial. O caráter semicondutor dos grãos surge de maneira termicamente assistida. Isto ocorre porque, em maiores temperaturas, há uma migração de Cu para as regiões intergranulares das cerâmicas e também uma reação de redução do Cu2+ em Cu+. Durante o resfriamento o Cu+ reoxida, dando origem a semicondutividade dos grãos (deficientes em Cu). Como as condições empregadas na sinterização influenciaram as propriedades finais das cerâmicas, incluindo tamanho médio de grãos, decidimos inovar no processamento cerâmico ao aplicar um campo elétrico durante o tratamento térmico partindo de um pó ainda amorfo. Isto levou à observação de dois cenários: i) em altos campos, o pó sai de seu estado amorfo, passa pela cristalização de fases intermediárias, seguida de síntese ultrarrápida (flash synthesis), sem densificação; ii) em baixos campos, o pó transita do estado amorfo à fase final (passando pela cristalização das fases intermediárias), acompanhada de sinterização ultrarrápida (flash sintering), com alta densificação, tudo isso em um único experimento (FAST O3S). Finalmente, demonstramos assim que utilizar um campo elétrico durante o tratamento térmico pode acelerar significativamente as taxas tanto de síntese quanto de sinterização, o que abre um novo paradigma no processamento de materiais cerâmicos.

Seminarista: Lilian Menezes de Jesus

Data e horário: Dia 13/10/2016, quinta-feira, das 10h às 11h

Local: Instituto de Física de São CarlosGrupo de Pesquisa Crescimento de Cristais e Materiais Cerâmicos, Área 2 da USP – sala de reuniões

Sobre CDMF 591 Artigos
O CDMF é um dos Centros de Pesquisa, Inovação e Difusão (CEPID) apoiados pela FAPESP. O Centro também recebe investimento do CNPq, a partir do Instituto Nacional de Ciência e Tecnologia dos Materiais em Nanotecnologia (INCTMN).