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Abstract
Using a genuinely tridimensional approach to the time-dependent Ginzburg–Landau theory,
we have studied the local magnetic field profile of a mesoscopic superconductor in the
so-called SQUID geometry, i.e., a square with a hole at the center connected to the outside
vacuum through a very thin slit. Our investigation was carried out in both the Meissner and the
mixed state. We have also studied the influence of the temperature on the space distribution of
the local magnetic field.

(Some figures may appear in colour only in the online journal)

1. Introduction

Demagnetizing effects, arising from the finiteness of real
samples, become extremely important when the size of the
specimen along the direction of the applied field is much
smaller than the lateral dimensions of its cross section. In
superconductors these effects—which are strongly dependent
on the sample geometry—derive from the existence of a stray
field produced by the shielding currents, which enhance the
internal field near the edges of the sample. An important
consequence is that, for superconducting films with thickness
smaller than the temperature-dependent London penetration
depth λ(T), the decrease of fields and currents is not governed
by λ(T), as in bulk samples, but by an effective penetration
depth which is inversely proportional to the thickness c of the
sample, i.e., 3(T) = λ2(T)/c. With this effective length, in
opposition to what occurs in bulk materials, a non-exponential
long-range interaction of vortices takes place, since the
currents interact with the stray fields generated by themselves.
In this case, as was first reported by Pearl [1], vortex–vortex
interactions decay as 1/r2, being thus much more repulsive
than in the case of Abrikosov vortices. As a consequence,

the value of the local magnetic field at the surface, required
to nucleate vortices and keep them inside the film, is larger
than the equivalent for bulk samples, which is merely the
applied field. This is intimately related to what is usually
called demagnetization effects.

The study of these features in superconducting thin films
are of particular importance for potential applications, such
as, for example, in the fabrication of microwave circuits [2],
in the development of atom chips [3], i.e., superconducting
devices which trap cold atoms, and in the production of
superconducting quantum interference devices (SQUIDs) [4].
In 2007, Brandt and Mikitik [5] studied what is known as
the shaking effect, considering an inclined DC magnetic field
and a small AC field (the shaking field) applied parallel to
the plane of a superconducting thin film. Thus, using the
Bean approach, they obtained an anisotropic relaxation of the
internal field and sheet currents over the sample. Some studies
by Brandt [6, 7], and by Clem and Brandt [8], described the
distribution of the internal field and the sheet currents in thin
films shaped in the so-called SQUID geometry, employing
some variations for the cross section of the sample. The
authors considered that finite films could be described by the
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London theory, expressing the sheet currents and part of the
coupling flux between the vortices and the holes or slits, by
a stream function. London’s and Maxwell’s equations were
averaged along the z direction. As a result, a 3D problem
was mapped into a 2D solution of these equations with λ(T)
replaced by 3(T).

In the present work we carried out the study of a
thin film in a SQUID geometry using the three-dimensional
time-dependent Ginzburg–Landau (3D-TDGL) theory. To our
knowledge, this is the first attempt to address such a relevant
problem by employing a genuinely 3D approach. Our results
confirm and extend those obtained on the illuminating work
reported in [6–8], for which the London theory was applied.

This paper is organized as follows. In section 2 we
present a brief summary of the TDGL equations and how
we solve them. In section 3 we apply this formalism to a
superconducting film in the SQUID geometry and show the
corresponding magnetic field profiles. Also, we investigate the
universality of these profiles with the parameter 3(T), as was
left implicit in [6], as well as the influence of the temperature
on the magnetic field distributions. In section 4 we present our
conclusions.

2. Theoretical formalism

The TDGL formalism is a useful tool to describe a great
variety of phenomena in superconductors. It is a set of two
equations which couple the two fundamental quantities of the
superconducting state, namely, the order parameter ψ and the
vector potential A. The superconducting electronic density of
Cooper pairs is given by |ψ |2 and the local magnetic field
profile is obtained through B = ∇ × A. According to [9] the
non-dimensional version of these equations is given by(
∂

∂t
+ iφ

)
ψ = − (−i∇ − A)2 ψ + (1− T)ψ(1− |ψ |2),

β

(
∂A
∂t
+∇φ

)
= Js − κ

2
∇ × B,

(1)

where the supercurrent density is

Js = (1− T)Re
[
ψ̄ (−i∇ − A) ψ

]
. (2)

The boundary conditions are

n̂ · (−i∇ − A) ψ = 0, on ∂�,

∇ × A→ H, as |r| → ∞,
(3)

where H is the uniformly applied external magnetic field;� is
the domain occupied by the superconducting material, and n̂ is
an outward unit vector, normal to the superconductor–vacuum
interface ∂�.

The notation employed in the present work is such
that the temperature, T , is expressed in units of the critical
temperature, Tc; the distances are measured in units of
the zero-temperature coherence length, ξ(0); the magnetic
field is in units of the zero-temperature upper critical field,
Hc2(0); the time is in units of the characteristic time
t0 = π h̄/8KBTc [10]; κ = λ(T)/ξ(T) = λ(0)/ξ(0) is the
Ginzburg–Landau parameter; β is the relaxation time of the

vector potential; and the symbol Re denotes the real part of a
complex function. Note that equations (1) and (2) are gauge
invariant, since they do not change under the transformation
ψ ′ = ψ eiχ , A′ = A + ∇χ , φ′ = φ − ∂χ/∂t. We choose the
zero-scalar potential gauge, that is, φ′ = 0 at all times.

The TDGL equations have been very useful to simulate
how vortices can be arranged as an external magnetic
field (either abruptly or adiabatically increased) is applied
to a superconductor below its critical temperature. Since
equations (1) do not have exact solutions, many discretization
algorithms have been devised for solving them numerically.
One of the most popular approaches is the gauge-invariant link
variables method (see for instance [11] for the solution of a
3D problem, and [12] for 2D problems). In [13], this method
was generalized to circular geometries. It was also adapted
and successfully employed to disks with a variable degree of
roughness on the surface [14].

Usually, equations (1) are solved numerically in two
different scenarios. One is that in which the system has
invariance along the z direction if the external field is
applied along the same direction; this is the case of a long
cylinder, either of circular or rectangular cross section. Within
this scenario, we have a true 2D problem for which the
physical quantities vary only with the x and y coordinates
and demagnetization effects are not present, that is, the local
magnetic field outside the sample is the external applied
magnetic field H. The other typical scenario is when the
system is a very thin film, for which the first TDGL equation
for the order parameter is solved only at the xy plane and
the second equation is solved by substituting the supercurrent
density with a superconducting sheet current density

Js = cδ(z)(1− T)Re
[
ψ̄ (−i∇ − A) ψ

]
, (4)

where c is the thickness of the superconducting film. This
replacement is equivalent to an average process of the
TDGL equations along the z direction, being a simplification
valid only if c � λ(T) [1]. Although in this case the
solution of the TDGL equations is significantly simplified, the
demagnetization effects are not neglected.

Both limits of the TDGL equations are very useful to
extract the most relevant physical properties of mesoscopic
superconductors. However, in one situation we lose important
information concerning the demagnetization effects which are
always present, whereas, for the other, the results will be
limited to very thin films. In the present work we solve the true
3D-TDGL equations for a SQUID as sketched in figure 1 by
using the algorithm developed in [11]. The SQUID has width
a, length b, and thickness c. The size of the hole is indicated
by hx and hy and the direction of the slit coincides with the
x axis. The system is considered inside a simulation box of
dimensions A ×B × C (not shown in figure 1). The size of
the simulation box is taken sufficiently large to ensure that the
local magnetic field equals H at its faces5.

5 The faces which we are referring to are the x = ±A /2, y = ±B/2,
z = ±C /2 planes.
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Figure 1. Schematic view of a mesoscopic superconducting
SQUID. The external applied magnetic field H is perpendicular to
the plane of the SQUID.

3. Results and discussion

The SQUID of figure 1 has been studied in [6] by
using the London equation and the Biot–Savart law to
determine the local magnetic field both inside and outside
the superconductor. The results of this approach suggest that
the local magnetic field along the slit of the SQUID (in
units of the applied field) Bz(x, 0, 0)/H obeys a scaling law
which depends exclusively on the effective penetration length
23(T)/a = 2λ2(T)/ac (in units of a/2), regardless of the
individual values of λ(T), a and c. In our units, and assuming
that λ(T) = λ(0)/

√
1− T , this corresponds to 23(T)/a =

2κ2/ac(1−T), where on the right-hand side of the last relation
a and c are in dimensionless units.

Since within the London model the order parameter
is assumed to be constant everywhere, one can reasonably
expect that results arising from such a treatment will be less
accurate than those obtained from a more comprehensive
theory, such as the one employed here. To allow a direct
comparison of our results with those of [6, 7], one has to
consider that Brandt did not introduce the explicit temperature
dependence of λ(T), which can be mimicked by choosing
T = 0, in which case the TDGL equations have the same
form as those obtained using ξ(T) as the unit length. For this
reason, the results presented in figures 2–6 refer to T = 0. The
presentation and discussions of the temperature dependence
of our results is postponed to the final part of the manuscript.
Another important observation is that all values of κ indicated
in the figures throughout the paper were taken with a sufficient
number of decimal places in order to make the value of
23(0)/a exact.

In figure 2 we have plotted the local field along the x axis,
which passes through the slit and the hole of the SQUID (as
shown in figure 1), for several values of H. The dimensions of
the superconductor are taken as 12 × 12 × 1, the simulation
box as 19 × 19 × 11, and the hole as 2.4 × 2.4.6 We used the
resolution of the mesh as ten points per ξ(0) in all directions.
As can be seen from this figure, the profile of the magnetic
field Bz(x, 0, 0)/H is very weakly dependent on H within the
Meissner state (curves with H = 0.1 and 0.3). Note that the
spatial distribution of Bz(x, 0, 0)/H is very similar to that
found in [6, 7], namely, a maximum within the slit, and a

6 In all the cases we have considered a = b. Furthermore, in order to make a
comparison of our results with those of [6] on an equal footing, we have taken
the size of the hole such that its dimension corresponds to hx = hy = 0.2a.

Figure 2. Intensity of the z component of the local magnetic field,
normalized to the external applied field, along the x axis for several
values of H. SQUID dimensions are 12 × 12 × 1 and the
Ginzburg–Landau parameter is κ = 0.774 596 669.

minimum inside the hole. As the mixed state sets in (i.e., for
curves with H ≥ 0.5 in figure 2), the profile of the magnetic
field inside the superconductor changes significantly, as one
should expect, due to the presence of vortices (which can be
seen in figure 3). On the other hand, along the slit and the hole,
the magnetic field tends to diminish with increasing applied
fields, although the overall behavior of the curve remains
unchanged. The reason for such a tendency is that an extra
magnetic field outside the superconductor is generated by
the supercurrents, which enhances the local field. However,
as vortices nucleate inside the superconductor, the shielding
supercurrent density is weakened, and so is the stray field.
Another interesting characteristic of the Bz(x, 0, 0)/H curve
is that, at the slit, the field is enhanced to as much as 1.6H,
whereas from [6, 7] the prediction for 23(0)/a = 0.1 is
∼2.6H. It becomes clear that the London theory overestimates
the enhanced field along the slit and the hole. Still concerning
figure 2, we can see that in the Meissner state, the local
magnetic field penetrates over a distance which is larger than
λ(0) (κ in our units). This also occurs in the cases discussed
in [6–8] because, for a film, the penetration of the field is
controlled solely by 23(T)/a and not κ , as is the situation
when we do not have demagnetization effects.

The upper panel of figure 3 is an intensity plot of the local
magnetic field in the z = 0 plane. The intensity of the field is
shown in the color bar. For H = 0.3 the superconductor is still
in the Meissner state, whereas for H ≥ 0.5 it is already in the
mixed state. As H increases, vortices penetrate through the
left side of the SQUID, but not along the slit. This is due to
the fact that the shielding currents on the outer face opposite
the slit are smaller than along the other faces of the SQUID, so
that the field is largely enhanced in the slit. Initially, once the
vortices start nucleating inside the sample, some of them will

3
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Figure 3. (Upper panel) Intensity plot of the z component of the
local magnetic field, Bz(x, 0, 0)/H, at the z = 0 plane for several
values of H: for H = 0.3 the SQUID is still in the Meissner state;
for H ≥ 0.5 the mixed state is already nucleated with N = 1 vortex
in the superconductor and 2 in the hole for H = 0.5,N = 5 vortices
in the superconductor and 2 in the hole for H = 0.7, and N = 8
vortices in the superconductor and 3 in the hole for H = 0.9. (Lower
panel) The intensity of the order parameter and streamline current
density for the same values of H.

be captured by the hole and some others will be distributed
around it. Note that when the number of vortices in the hole
saturates, they stay as far as possible from the slit, where the
shielding currents are larger. In the lower panel of figure 3 we
show the intensity of the order parameter with current density
streamlines superimposed.

According to [6, 7], the field at the slit and the hole is
further enhanced as 23(T)/a decreases. We have tested this
tendency by changing a while both κ and c were kept fix.
Figure 4 shows two curves of Bz(x, 0, 0)/H for two distinct
values of a. Indeed, as 23(T)/a decreases, the field becomes
larger everywhere outside the sample, and the magnetic
response is even more diamagnetic along the superconducting

Figure 4. The same as in figure 2 for two SQUIDs of distinct
widths and lengths, the same thickness, and the same
Ginzburg–Landau parameter κ = 0.774 596 669. The parameters
were chosen such that for the smaller SQUID 23(0)/a = 0.1 and
for the larger one 23(0)/a = 0.075.

Figure 5. The same as in figure 2 for two SQUIDs of distinct
dimensions and the same Ginzburg–Landau parameter
κ = 0.774 596 669. The parameters were chosen such that for both
SQUIDs we have the same 23(0)/a = 0.075.

core. Quantitatively, however, the enhancement is not as large
as predicted by London theory.

We have gone further on investigating the independence
of Bz(x, 0, 0)/H with respect to the parameters κ, a and
c, although not individually but rather through 23(T)/a =
2λ2(T)/ac. In fact, in the London approach for a very thin film
one can average both the 3D London and Maxwell equations

4
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Figure 6. The same as in figure 2 for two SQUIDs of the same
width and length and distinct thickness. Both SQUIDS have
different Ginzburg–Landau parameters. Although characterized by
different parameters, both SQUIDS have 23(0)/a = 0.1.

along the z direction, and map a 3D problem into a 2D one,
although the true three-dimensional nature of the original
problem is not lost after carrying out this simplification. In
this manner, the equations have a single parameter, namely,
3(T). Nevertheless, in the 3D Ginzburg–Landau approach
we always have a dependence on the material through the
parameter κ and the dimensions of the superconductor. In this
part of the investigation the goal was to verify whether the
full Ginzburg–Landau equations, without any simplification,
exhibit the same scaling law.

In figure 5 we depict two Bz(x, 0, 0)/H curves for two
SQUIDs with different dimensions, a and c, but with the
same value of κ . In both cases, 23(0)/a = 0.075. As can
be seen in the figure, from one curve to the other the field
profile varies throughout the whole SQUID, including the
superconductor core as well as the slit and the hole, and the
universal behavior predicted by London theory does not hold
in the 3D Ginzburg–Landau approach. Finally, in figure 6,
we show the same curves for different values of c and κ , but
keeping the lateral dimensions of the film a fixed. As can be
seen from this figure, the local field exhibits different profiles
both inside and outside the SQUIDs, although not as much as
in the previous case.

We have also investigated the influence of the temperature
on the local magnetic field distribution of the SQUID. In
figure 7 we have plotted the field profile for two values of
the temperature. One can clearly see that, as the applied
magnetic field increases, the enhancement of the local field
becomes much less important for larger temperatures. This is
consistent with the fact that the higher the temperature, the
more uniform the local field inside the superconductor should
be, and the weaker the superconducting sheet current density.
As a consequence, the interaction of the currents with the stray
fields are weakened as T increases.

Figure 7. The same as in figure 2 for a SQUID of dimensions
12 × 12 × 1 at two different temperatures.

4. Conclusions

Using the 3D-TDGL approach we have studied the local field
distribution associated with a thin superconducting film in the
so-called SQUID geometry. To our knowledge, this is the first
report of a genuinely 3D solution for this problem. Previous
results, obtained by Brandt and Clem [6–8] in the framework
of the London theory, were revisited and compared to those
obtained here. As expected, although the general trends are
quite similar, the agreement is usually of a qualitative nature.
In particular, we have shown that the universality of the field
profiles with respect to the parameter 23(T)/a, implied by
the treatment within the London theory, does not hold when
the 3D-TDGL approach is employed. This limitation is not
surprising, since the London approach should be recovered
from our 3D-TDGL treatment only in the limit of extremely
large κ .
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