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a  b  s  t  r  a  c  t

We  report  on  the  use  of  nanocrystalline  SrTi1−xFexO3 (STF)  for  sensing  ozone  gas. Amorphous  thin  films
were  evaporated  by the  electron-beam  physical  vapor  deposition  technique  and  then  converted  to a
polycrystalline  form,  as shown  by  X-ray  diffraction  patterns,  after  ex  situ annealing  at  a relatively  low
temperature  (550 ◦C).  The  influence  of  the  iron  content  on  the  microstructure  was  investigated  by  both
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scanning  electron  microscopy  (SEM)  and atomic  force  microscopy  (AFM),  which  revealed  that  the  surface
roughness  of the  films  increased  slightly  as the  amount  of  iron  increased.  Electrical  resistance  mea-
surements  were  carried  out  to  determine  the  response  of  the films  upon  exposure  to  ozone  and  when
compared  to  other  oxide  metal  sensors,  STF  films  can  also  be  considered  as  good  candidates  for  application
as  ozone  gas  sensors.

© 2013 Elsevier B.V. All rights reserved.
. Introduction

Solid state sensors are attractive to monitor the environment
nd to control technological processes because of their high sensi-
ivity, short response times, low cost, low weight, and low energy
onsumption [1,2]. Most solid state sensors for detecting reducing
nd flammable gases such as CO, H2, and CH4, are of the conducto-
etric type and make use of ceramics or thick-film materials [2].
owever, this methodology has been shown to be inefficient for
etecting ozone gas because of its high activity and the need of

arge thicknesses of film sensors even with small grain size [2].
Detection of the exact amount of ozone present in the atmo-

phere is of great importance, since this gas is a strong oxidizing
gent, which has both positive and negative effects in medicine
nd various technological processes [1,2]. Different materials have
een studied for their potential application as ozone gas sensors
2–22]. For instance, n-type materials such as In2O3 [2–14] and

O3 [15–17] thin films have received a great deal of attention dur-
ng the past few years. In particular, nanocrystalline In2O3 films

ere able to detect ozone concentrations as low as 15 ppb and
o operate at room temperature, making them promising for the
ealization of low energy consumption and low-cost devices [4,5].
Although not so studied as In2O3 and WO3, a number of other
aterials were also shown to be suitable as ozone gas sensors.
mongst them, we may  quote SnO2 [18], hybrid SnO2/SWNTs

∗ Corresponding author. Tel.: +55 16 33739828.
E-mail address: valmor@ifsc.usp.br (V.R. Mastelaro).

925-4005/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.snb.2013.02.068
thin layers [19], CuCrO2 nanocrystals and microcrystals [20] and
Cd1−xZnxO [21]. Recently, G. Korotcenkov and B. K. Cho published
a review of different types of sensors that could be used for ozone
detection [2].  In particular, they compared the sensing behavior of
two well studied conductometric sensors, SnO2- and In2O3-based
materials and came to the conclusion that SnO2 is an acceptable
material for ozone sensor fabrication because it presents a high
sensitivity and stability, although it has some disadvantages in
comparison with In2O3.

Perovskite-based compounds are interesting materials from the
viewpoint of both fundamental and applied solid-state physics
since their structures are very versatile and allow different and
useful applications [22–28].  Among several perovskite-based com-
pounds, SrTi1−xFexO3 (STF) solid solution has recently attracted the
attention of many researchers due to its potential as an oxygen
gas and hydrocarbonates sensors for automotive emission control
[22–28]. The addition of Fe2O3 to the SrTiO3 crystal structure causes
the replacement of some Ti4+ by Fe3+ ions, which can create differ-
ent types of defects due to the difference in their oxidation states
[25–29]. When a Fe3+ ion occupies the Ti4+ octahedral site, mobile
oxygen vacancies (Vö) are formed in order to balance the elec-
tric charge. The introduction of a large amount of iron creates a
relatively large concentration of defects [29].

STF systems in film form have mainly been studied with respect
to the synthesis and electrical characterization after screen printing

a paste prepared from STF powder onto a determined substrate
[30–34]. This method, although simple, normally produces thick
films with micrometer-sized particles, which requires a high tem-
perature and a long heating period during the calcination process.

dx.doi.org/10.1016/j.snb.2013.02.068
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:valmor@ifsc.usp.br
dx.doi.org/10.1016/j.snb.2013.02.068
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shows an increase in the grain size probably due to a coalescence
phenomenon, with the formation of pores between the grains.
The mean surface roughness obtained from the AFM images show
values of 1.4 nm,  5.6 nm, 8.4 nm and 9.2 nm for x = 0.00, x = 0.075,
20 V.R. Mastelaro et al. / Sensors a

To the best of our knowledge, there are no studies about the
ensitivity of p-type SrTi1−xFexO3 (STF) thin films to ozone gas. To
ll this gap, the present work examines the sensitivity of nano-
tructured SrTi1−xFexO3 (0 ≤ x ≤ 0.15) thin films obtained by the
lectron-beam physical vapor deposition (EB-PVD) process. The
amples used as targets were prepared using the polymeric pre-
ursor method [35,36]. We  also study the influence of the iron
oncentration on structural and morphological properties of thin
lms and use electrical characterization to check the sensitivity of
he STF thin films to ozone gas.

. Experimental details

Nanocrystalline SrTi1−xFexO3 (STF) powder samples with dif-
erent Fe concentration (7.5, 10.0 and 15.0 mol% Fe) were obtained
y the polymeric precursor method [35,36]. The synthesis proce-
ure is well described elsewhere [35]. After removing water and
he organic compounds, the precursor powders of each sample
ere annealed in an alumina crucible at 700 ◦C for 3 h in an electric

urnace with air atmosphere.
STF thin films were evaporated in a Balzers BAK600 evap-

rator using as targets the powder samples prepared with the
olymeric precursor method. The films were deposited on SiO2/Si
ubstrates containing 100 nm-thick platinum electrodes, which
ere imprinted on a sputtered Pt film using photolithography and

ift off processes. The distance between the electrodes was  50 �m.
0 nm-thick STF samples were evaporated by keeping the sub-
trates at around 50 ◦C, with the oxygen pressure in the chamber
ept around 2 × 10−4 mbar. During evaporation, the thicknesses
ere monitored with a quartz balance and at the end of the process
e confirmed the thicknesses by means of an electron microscope

mage. In order to crystallize the samples, the as-deposited amor-
hous films were submitted to an ex situ annealing for 4 h at 500 ◦C

n an electric furnace with air atmosphere.
The crystalline structure of the STF thin films was investigated

y X-ray diffraction (XRD) measurements (Rigaku Ultima) in a two-
heta range from 10 to 80◦ with steps of 0.02◦ and scanning speed of
◦ min−1 using Cu K radiation. The microstructural characteristics
f the thin film surface were investigated using an atomic force
icroscope (Digital Instruments, Nanoscope IIIa) in contact mode.

he film thicknesses were measured using a field emission scanning
lectron microscope (FE-SEM, Zeiss Supra 35) operating at 3 kV.

The gas sensing properties of STF thin films were investigated
n a test chamber that allows controlling the sensor temperature
nder variable gas concentrations. Dry air was used both as a ref-
rence (baseline) and as a carrier gas at a constant total flow of
.3 cm3/s. The ozone (O3) gas was generated by oxidizing oxygen
olecules of dry air by a pen-ray UV lamp calibrated to give an

3 concentration range between 0.03 ppm and 0.8 ppm. The dry air
ontaining ozone was blown directly on the sensor placed on top a
eated holder within the test chamber. The working temperature
Twork) of the sensor, ranging from room temperature to 400 ◦C, was
ontrolled by an external heater source based on a Hg lamp driven
y a regulated power supply. The measurement started after the
ample resistance achieved a steady value. The resistance change
pon exposure to ozone was measured by recording the current
t an applied constant dc potential V = 50 mV  with an HP4140B
ource/Pico-ammeter.

. Results and discussion

.1. Structural and microstructural characterization of STF

owder and thin films

Fig. 1 shows the X-ray diffraction patterns of x = 0.00, 0.075, 0.10
nd 0.15 target nanocrystalline powder samples heat-treated at
Fig. 1. XRD of SrTiO3 (x = 0.00) and STF nanocrystalline powder samples heat treated
at 700 ◦C during 3 h.

700 ◦C for 3 h. All patterns show well defined diffraction peaks cor-
responding to the STF solid solution with a cubic symmetry. For
samples containing iron, the presence of low-intensity diffraction
peaks was  observed corresponding to the SrCO3 phase. There was
also a spurious peak around 28.8◦ due to a fluorescence effect. These
results show that the STF samples used as targets for thin-film
deposition do not present any crystalline phase containing iron.

Fig. 2 shows the XRD of the STF films after the ex situ anneal-
ing. The XRD pattern of SrTiO3 (x = 0.00) thin film sample obtained
at the same conditions is also shown in the figure. The peaks in
the STF samples identified as belonging to the perovskite structure
of SrTiO3 phase (JCPDS: 35-0734) present a lower intensity, prob-
ably because of the film thickness (70 nm). We  also observed an
intense diffraction peak from the SiO2/Si substrate, but no evidence
of diffraction peaks related to iron oxide crystalline phases.

The influence of the iron concentration on the surface
microstructure of STF films was analyzed by means of three-
dimensional AFM images shown in Fig. 3. The images of the
iron-doped samples depict microstructures that are homogeneous,
rough, and uniform, with nanosized grains. The x = 0.15 sample
Fig. 2. XRD of 70 nm annealed thin films deposited on Si/SiO2 substrates.
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Fig. 3. AFM images of annealed thin film samples

 = 0.10 and x = 0.15, respectively. These results show that the
ncrease of iron increases just slightly the surface roughness of the
ron-doped STF samples.

.2. Gas sensing characterization of STF thin films
Fig. 4 shows the resistance response of thin film samples
 = 0.075, x = 0.10, and x = 0.15 as a function of the ozone gas concen-
ration and the work temperature. In the case of the x = 0.075 and

 = 0.10 samples (Fig. 4(a) and (b)), the work temperature was fixed

able 1
omparison of the S values of STF samples and In2O3- and WO3-based ozone sensors.

Sensors Work temperature (◦C) O3 (p

In2O3 300 100 

WO3 250 30, 4

STF
x  = 0.075 250 75 

x  = 0.075 250 600 

x  = 0.10 250 600 

x  = 0.15 250 600 

x  = 0.15 220 600 

x  = 0.15 190 600 
) x = 0.00, (b) x = 0.075, (c) x = 0.10 and (d) x = 0.15.

at 250 ◦C and the ozone concentration was  varied. For the x = 0.15
sample (Fig. 4(c)), the ozone concentration was fixed at 600 ppb
whereas the temperature was varied between 190 ◦C and 310 ◦C.
During each measurement cycle, the exposure time to the ozone
gas was  kept constant for 2 min  (x = 0.075 and x = 0.15) and 3 min
(x = 0.10). As can be seen in Fig 4, the samples show a p-type semi-

conducting characteristic since their resistance decrease with the
adsorption of oxidizing gases.

It is possible to observe from Fig. 4 that all samples have a good
sensitivity to ozone, although we also observe a modification of the

pb) Response (S) Reference

1500 [37]

00, 800 16, 260, 310 [15]

3
170–580 This study
10
53
267
580
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order to optimize the sensor response and recovery time, as well as
ig. 4. Ozone gas response for: (a) x = 0.075 (b) x = 0.10 and (c) x = 0.15 annealed
amples as a function of ozone concentration and/or work temperature.

ase line, mainly for the x = 0.075 sample. The resistance changes by
t least one order of magnitude when the thin films are exposed to

00 ppb of ozone. The response time is about 2 min  and the recovery
ime is less than 5 min  when exposed to 600 ppb, at a work tem-
erature of about 250 ◦C. For the x = 0.075 thin film, it was possible
uators B 181 (2013) 919– 924

to have a good resistance response when the sample was exposed
to 75 ppb of ozone. We can also observe that for the x = 0.075 and
x = 0.10 samples a saturation occurs when the amount of ozone are
respectively higher than 525 and 800 ppb. In general, the response
of oxides materials saturates when the concentration of the gas to
be detected increases above a certain value. This effect is related to
the number of available adsorption sites and our results shows that
this number increases with the concentration of iron.

As seen in Fig. 4(c), the sensitivity of the x = 0.15 sample to ozone
at 250 ◦C is higher than that of the x = 0.10 sample and decreases
significantly when the work temperature increases to 310 ◦C. A
decrease in the work temperature to 190 ◦C causes an increase in
resistivity of one order of magnitude and increases considerably
the recovery time compared with the same sample measured at
250 ◦C.The sensor response, S = R0/R, with R < R0, was  obtained by
taking the ratio of the resistances in dry air and in ozone gas. For
comparison, the values of R0 and R were measured from the exper-
imental data collected at 250 ◦C for different amounts of ozone.
For a determined amount of gas and temperature, the R0 value
was measured when the sample resistance achieved its steady
value whereas the R value was  measured after 2 min  (x = 0.075 and
x = 0.15) and 3 min  (x = 0.10). Table 1 compares the sensor responses
obtained with our samples with those of In2O3- and WO3-based
ozone sensors. The sensitivity to ozone of our STF x = 0.075 sample
is like that of WO3 but significantly lower than that of In2O3. The
response and recovery times of x = 0.075 sample are comparable to
those of In2O3-based ozone sensor which presents a response time
of 1 min  and a recovery time of about 10 min  [37]. The response to
ozone of the STF x = 0.15 sample at 220 ◦C and 190 ◦C are relatively
higher but their recovery time is longer when compared to x = 0.075
sample.

The process of interaction and detection of ozone gas with oxide
materials has been described by different works in the literature
[38]. The corresponding chemical reactions between a triatomic
molecule O3 and one free adsorption site, A, can be described by
the following reaction [38]:

A + O3 → (A O) + O2; (A O) + e− → (A O)− (1)

Ozone interacts directly with the metal oxide surface. In this
case (strong chemisorptions), an electron of the conduction band
is transferred from the semiconductor to the adsorbed species
decreasing thus the sensor resistance.

According to the XRD and AFM data, the increasing of iron con-
tent does not notably affect the structure and the morphological
properties of the STF thin films. The sensor response cannot be also
attributed directly to the increase of iron because x = 0.10 sample
presents a lower response of x = 0.075 sample. In this way, further
study still needs to be done to understand the detailed gas-sensing
mechanism of the STF samples.

4. Conclusions

Perovskite nanostructured SrTi1−xFexO3 (STF) thin films con-
taining 0.075, 0.10 and 0.15 mol% of iron were prepared by electron
beam evaporation using as targets samples obtained by the poly-
meric precursor method. STF thin films are polycrystalline after
annealing and present a distribution of iron that seems to be homo-
geneous. The STF thin-film sensor response to ozone was verified
as a function of ozone content and working temperature. We  found
that the x = 0.075 sample operating at 250 ◦C exhibits the best ozone
sensitivity, response and recovery times. Further work is needed in
to avoid the variation of the baseline between the gas sensing cycles
and to find the relationship between iron content, morphology and
sensor response.
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