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In this communication, a systematic study of the surface structure, including energy management during
morphological transformations of tetragonal phase of LaVO4, has been carried out. For this study, we
combined experimental findings and first-principles calculations to develop a Wulff construction model.
Our findings can help further understand the synthetic control of crystal shape via tuning of surface
chemistry.
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1. Introduction the excess free energy per unit area for a particular crystallographic
The phrase ‘‘structure dictates function” is an established dic-
tum from the field of biology that is now recognized in materials
science [1]. In particular, the interplay between the surface struc-
ture and morphology of materials and nanomaterials plays a key
role in improving the materials’ properties and performance, espe-
cially for applications in chemistry and chemical engineering fields
[2]. There is considerable interest in the effects of the shapes and
facets of crystalline materials; it is well known that the atomic
configuration of the exposed crystal plane plays an important role
in these materials’ performance. This is due mainly to the arrange-
ment of the surface atoms and the number of dangling bonds on
different crystal planes [3–5].

Anisotropy is a basic property of single crystals, which show dif-
ferent physical and chemical properties on various facets in direc-
tions. Usually, these properties can be correlated with the surface
energy associated with each facet and can be finely tuned by tailor-
ing the facets to have a specific surface atomic arrangement and
coordination, i.e. by tailoring the fraction of surface atoms with
unsaturated coordination shells and the number of under-
coordinated surface atoms. Measuring the geometries and energies
of these surface facets is extremely challenging [6]. Surface energy
considerations are crucial in understanding and predicting themor-
phologies of noble metal nanocrystals. Surface energy is defined as
face. It largely determines the faceting and crystal growth observed
with particles at both the nanoscale andmesoscale. Therefore, opti-
mizing the surface-driven attributes of these materials requires a
detailed understanding of the structure and chemical composition
of their surfaces.With this understanding, one can tailor the surface
atomic structure and control which facets of a given material are
exposed. Consequently, substantial effort has been devoted to
understanding and predicting the structure and stability of com-
plex materials, utilizing state-of-the-art experimental techniques
and advanced theoretical approaches [7,8].

Using experimentation to identify the atomistic details involved
in a typical crystal growth process is not easy. Computational sim-
ulations via density functional theory (DFT) are real alternatives
that can provide fresh insight at the atomic scale and thereby spec-
ify the important individual atomistic processes taking place dur-
ing crystal growth. These processes control the final morphology,
surface structure, and stability of the end-product materials [9–
29]. In addition, there are good reviews on theoretical methods
for surface chemistry [30] and the modeling of nanoparticles [31].

By means of experimental and theoretical calculation methods,
Li et al. [24] investigated the mechanisms of morphology of tetrag-
onal lanthanum orthovanadate (t-LaVO4) nanocrystals controlled
by surface chemistry. Some t-LaVO4 nanocrystals with different
morphologies were prepared via the hydrothermal method by tun-
ing the pH of the growth solution. The authors perform first-
principles calculations to examine the relaxed surface structures
and to calculate the surface energies and surface tensions of all sur-
faces under different passivated conditions. Their results showed
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that the aspect ratio and the exposed facets of the nanocrystals
changed as the acidity of the surface conditions changed. This
was in good agreement with their experimental findings.

In this communication, we describe the development of a model
based on the Wulff construction [32], which can be used to explic-
itly predict the evolution of morphologies in different environ-
ments, as recently developed by our research group [28,29,33].
This model includes a detailed configurational analysis of the dif-
ferent facets and allows us to explain and rationalize the experi-
mental results of Li et al. [24]. By carrying out atomistic
simulations elucidating the diverse atomic-scale structures of a
set of low-index surfaces (110), (100), (111), (001) and (101)
of t-LaVO4, we show that it is possible to achieve the same final
results without doing many quantum calculations with high com-
putational demand. A correlation was found between the broken
bonding density (Db) and the surface energy. The relaxed struc-
tures and surface energies were used to obtain a complete array
of accessible morphologies. This method provides an approach
with both predictive and explanatory capabilities. The calculated
diagrams relate the crystal growth conditions with the observed
morphologies in an attempt to rationalize the morphologies
obtained under different experimental conditions.
2. Theoretical method and computational procedure

Calculations related to t-LaVO4 were performed using DFT and
implemented in the Vienna ab initio simulation package (VASP)
Fig. 1. Surface models of (110), (100), (111), (001) and (101) for t-LaVO
in order to find an ideal structure in vacuum [34,35]. The Kohn-
Sham equations were solved by means of the Perdew–Burke–Ern
zerhof (PBE) exchange-correlation functional [36] and the
electron-ion interaction was described by the projector-
augmented-wave method [34,37]. The plane-wave expansion was
truncated at a cut-off energy of 520 eV. For bulk and surfaces cal-
culations, a (4 � 4 � 4) and (4 � 4 � 1) Monkhorst-Pack special k-
points grid was used, respectively. The positions of all atoms, both
in the bulk and on the surfaces, were allowed to relax. The conju-
gated gradient energy minimization method was used to obtain
relaxed systems; this was accomplished by requiring the forces
experienced by each atom to be smaller than 0.01 eV Å�1. Surface
calculations were done by considering slabs with thicknesses of
up to �20 Å. This was done to obtain careful descriptions of the
surfaces and to reach convergence on the corresponding energy
surface values. A vacuum spacing of 15 Å was introduced in the
z-direction so that the surfaces would not interact with each other.
Surface models containing 6, 4, 4, 6 and 9 molecular units for the
(001), (101), (110), (100) and (111) surfaces, respectively, were
used in the calculations. These represent all low index surfaces
and were modeled using stoichiometric systems. It is worth noting
that the (110), and (100) surfaces are O2-terminated, and the
(111) surface is O-terminated, while (001) is LaV and O2-
terminated, and the (101) surface is La-terminated. Fig. 1 depicts
the surface representation of the t-LaVO4 used in the calculations.

The conventional approach to the quantitative study of surface
morphological properties is based on the classical work of Georg
4. The green, blue and red represent La, V and O atoms, respectively.
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Wulff in the beginning of the 20th century [32]. The Wulff con-
struction has been successfully used in materials science to obtain
the shapes of materials, including nanomaterials [38–40]. The sur-
face energy (Esurf) is defined as the total energy per repeating cell of
the slab (Eslab) minus the total energy of the perfect crystal per
molecular unit (Ebulk) multiplied by the number of molecular units
of the surface (n), divided by the surface area per repeating cell of
the two sides of the slab, as follows:

Esurf ¼ Eslab � nEbulk

2A

The broken bonding density (Db) index proposed by Gao et al.
[41] was used. By means of Db values it is possible to verify the sur-
face stability and analyze the number of broken bonds per area of
the surface. In the Db equation, Nb is the number of broken bonds
per unit cell area on a particular surface and A is the surface area
of the unit cell.

Db ¼ Nb

A

Table 1
Values of Esuf, number of broken bonds, area, and broken bonding density (Db)
calculated for t-LaVO4.

Surface Esurf (J m�2) Broken bonds Area (nm2) Db (nm�2)

(100) 0.39 8 0.50 16.0
(110) 0.59 8 0.35 22.9
(101) 0.76 12 0.38 31.6
(111) 1.04 28 0.91 30.8
(001) 2.87 20 0.57 35.1

Fig. 2. Ideal morphology (in the center) and map of a few
3. Results and discussion

Table 1 lists the values of the surface energies as well as the bro-
ken bonding density (Db) of the faces used in the Wulff construc-
tion. According to the DFT calculations, the order of stability of
the surfaces is (100) > (110) > (101) > (111) > (001).

The Db method has shown certain value due to its simplicity
and accuracy in basic systems [29,41]. These results can be directly
related to the order and disorder of surface stability; higher Db val-
ues represent the presence of a larger quantity of defects on the
surface (broken bonds), indicating an unstable surface. For t-
LaVO4, the Db results indicate the following order (100) > (110)
> (111) > (101) > (001). Therefore, these results are the inverse
of those found for the (101) and (111) surfaces energy. This can
be attributed to the complexity of this structure which involves
different kinds of bonds with different energies and this method
just take into account the number of broken bonds, independent
of the type. In this way, a higher number of broken bonds increase
the quantitative accuracy of the method in this structure. Never-
theless, the method showed a fast way to start the surfaces studies.

It is known that morphologies can undergo changes because of
differences in the environments in which they are synthesized.
These differences may include the presence of surfactants and
impurities, and differences in solvents, temperature, and synthetic
routes. From the Esurf values and the Wulff construction, it is possi-
ble to obtain the morphologies of t-LaVO4 in vacuum.

By assuming the ideal morphology in vacuum as a starting point
(see the center of Fig. 2), it was possible to create all of the morpho-
logical routing changes caused by surface energy variation that
take into account the (110), (100), (111), (001) and (101)
morphologies of t-LaVO4. Surface energy is in J m�2.



Fig. 3. Morphologies of t-LaVO4 when the values of Esurf decrease for (a) the (001) surface; (b) the (111) surface; (c) the (110) surface; (d) the (101) surface and (e) the (100)
surface. Surface energy is in J m�2.
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surfaces. This simple strategy is based on the modulation of the
relationship between the surface stabilities of the different faces
and the areas of those parts which are exposed in the final shape.
The map of available morphologies of t-LaVO4 is displayed in Fig. 2.
Fine-tuning of the desired morphologies can be achieved by con-
trolling the values of the Esurf of the different surfaces. This can



A.F. Gouveia et al. / Chemical Physics Letters 660 (2016) 87–92 91
be a powerful tool to evaluate the morphologies of materials
because of the difficulty in simulating all the details in a reaction
system that interacts with each surface [28,29,33].

Fig. 3 depicts a group of morphologies obtained by decreasing
the surface energy in small amounts of the (001), (111), (110),
(101) and (100).

As was mentioned earlier, the effect of solution acidity on the
morphology of as-synthetized t-LaVO4 nanocrystals was reported
by Li et al. [24]. In their study, the authors prepared nanocrystals
using a hydrothermal method in conditions of several different
levels of acidity: most-acidic, highly-acidic, moderately acidic
and weakly acidic. To compare the resulting morphologies, they
simulated these conditions using a 2 � 1 supercell for all surface
passivation. Li et al. [24] demonstrated that the (001) surface is
the most affected by the pH shift; its Esurf decreased as the fraction
of hydrogen in the adsorbates decreased, while the Esurf of the
(100) and (101) surfaces first increased and then decreased. The
difference of the values for the surface energies of (100), (101)
and (001) calculated and those obtained by Li et al. [24] may be
due to the different functional used in the calculation. Nevertheless
the order of stability is the same.

However, here we show that it is possible to achieve the same
final results, with the exception of the advantage to predict, with-
out doing many quantum calculations with high computational
demand (such as supercell and adsorption of atoms or molecules).
Starting with the ideal morphology we decreased the (001) surface
energy, as shown in Fig. 3a, and found it possible to observe not
only morphologies similar to those synthetized by Li el at. [24],
but also more possibilities. To adjust the elongation of the particle,
it is necessary to change the (101) energy surface, which is respon-
sible for this part of the structure. When the (101) surface energy
decreases, the exposed area of the surface increases and the rela-
tive area of (100) decreases causing the structure to become com-
pressed, or less elongated (see Fig. 3d). Therefore, the
morphologies of t-LaVO4 are controlled by (001), (101) and
(100) surface energies.

Material mapping can be used as a guide for experimental
researchers in order to evaluate where synthetic modifications
interact in a more pronounced way. Some published papers regard-
ing t-LaVO4 report various experimental morphologies [42–46]. In
these papers, it is possible to find similarities between particles of
the same phase when compared to the morphology map. For an
accurate comparison, it is necessary to perform a more systematic
study of the morphology. This is because the size of the particles
makes precise determinations regarding the exposed planes diffi-
cult from an experimental perspective. It is worth noting that the
simulation does not take into account the formation of particles
via any secondary process such as aggregation and coalescence of
primarily particles.
4. Conclusions

The study of a material’s morphological changes based on the-
oretical calculation can be used to gain a better understanding of
the control of its growth and to provide a more reasonable expla-
nation about its mechanisms of transformation. In this communi-
cation, tetragonal phase LaVO4 is investigated by performing
theoretical calculations on the mechanism of the morphology
transformation. The present strategy provides a perspective for
further studying the surface structure and other physical and
chemical related applications. The calculated morphology maps
must be used as guide for experimentalists to analyze and discuss
the results that they obtain by means of Field Emission Gun-
Scanning Electron Microscopy (FEG-SEM) and/or Transmission
Electron Microscopy (TEM). This methodology clearly show the
exposed faces and are capable of explaining the formation of com-
plex morphologies, such as pipes, and hollow spheres. We used
this guide with experimental morphologies of different binary oxi-
des such as: Co3O4, a-Fe2O3, and In2O3, as well as metals and metal
oxides such as: Ag, anatase TiO2, BaZrO3, and a-Ag2WO4, and
BaWO4. However, one must recognize that the results presented
here are for ideal systems in vacuum. There are important factors
involved in a synthesis process that affect the final shape of the
end product, including the precursor, solvent, reducing agent,
ligand agent, and capping agent. In addition, the presence of
defects and impurities may change growth paths and energetics.
Both factors can change the morphology of the final product. Fur-
ther calculations which include these effects will help to improve
our understanding of the atomic nature of the observed growth
modes and put our understanding of the final morphology on a fir-
mer footing.
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