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Correspondence should be addressed to Jin Li; cqstarv@hotmail.com

Received 24 August 2016; Accepted 9 October 2016; Published 16 February 2017

Academic Editor: Christian Corda

Copyright © 2017 Jin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The
publication of this article was funded by SCOAP3.

We investigate the gravitational quasinormal modes (QNMs) for a type of regular black hole (BH) known as phantom BH, which is
a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three
different spacetimes: asymptotically flat, de Sitter (dS), and anti-de Sitter (AdS). In order to consider the standard odd parity and
even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating
the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is
found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd
and even parities. The decay rate of perturbation is strongly dependent on the scale parameter 𝑏, which measures the coupling
strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the
thermodynamics of such regular phantom BH is also influenced by 𝑏. The obtained results might shed some light on the quantum
interpretation of QNM perturbation.

1. Introduction

As a major topic in cosmology, the accelerated expansion of
our universe has caused widespread concern in the scientific
community. Since the effect of gravity causes the expansion
speed to slow down, the accelerated expansion of the universe
implies the existence of an unknown form of energy in the
universe. The latter provides a repulsive force to push the
expansion of the universe. Such unknown energy is called
dark energy (DE). Subsequently, a large number of DE
models have been proposed, among which the one with
cosmological constant is the most famous. Even though the
model of DE with the cosmological constant is reasonable in
physical theory and consistent with most observations, two
difficulties still remain unsolved, namely, how to derive
“vacuum energy” from quantum field theory and why the

magnitudes of present DE and dark matter are of the same
order.

Many modern astrophysics observations indicated the
possibility of pressure to density ratio𝑤 < −1. For example, a
model-free data analysis from 172 type Ia supernovae (SNIa)
resulted in a range of −1.2 < 𝑤 < −1 for our present
epoch [1]. According to the WMAP data during 7 years,𝑤 = −1.10+0.14−0.14(1𝜎) [2]. By using the data from Chandra
telescope, an analysis of the hot gas in 26 X-ray luminous
dynamically relaxed galaxy clusters gives 𝑤 = −1.20+0.24−0.28
[3]. The data on SNIa from the SNLS3 sample estimates𝑤 = −1.069+0.091−0.092 [4]. In fact, several DE models with a
supernegative equation of state provide better fits to the above
data [5–8]. And all these approaches are in favor of phantom
DE scenario [9–13], in which a constant equation of state
parameter is used [14, 15]. This implies that the phantom
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model might be meaningful for in-depth understanding of
DE.

In the phantom model, the signature of the metric is +2,
and the action of the model reads𝑆 = ∫√−𝑔𝑑4𝑥 [𝑅 + 𝜖𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 − 2𝑉 (𝜙)] , (1)

where 𝑅 is the scalar curvature, 𝑉(𝜙) is the potential of the
scalar field, and 𝜖 = −1 corresponds to a phantom scalar field
while 𝜖 = +1 is for a normal canonical scalar field.

Bronnikov and Fabris first investigated the properties of
BHwith phantom scalar field in vacuum and derived a phan-
tom regular BH solution 10 years ago [16]. Inside the event
horizon of such phantom BH there is no singularity similar
to the case of regular BHs with nonlinear electrodynamics
sources [17]. Outside the event horizon, the properties of a
phantom BH are similar to those of a Schwarzschild BH. Due
to the absence of the singularity, such phantom regular BH
solution has attracted much attention from researchers.

On the other hand, the research of BH perturbation has
always been an important issue in BH physics. The first
work on QNM in AdS spacetime was about scalar wave in
Schwarzschild-AdS spacetime [18], which is then followed
by a study on scalar wave in topological AdS spacetime
[19]. There are a large number of works on regular BH’s
QNMs [17, 20–25]. Among various types of perturbation,
gravitational perturbation is generally considered to be the
most important form due to its practical significance. The
intrinsic properties and the stability of a BH can be unfolded
through its corresponding gravitational perturbation. In the
fifties of last century, Regge and Wheeler began to study the
gravitational perturbations of static spherically symmetric
BHs. It was pointed out later that [26] the higher dimen-
sional gravitational perturbations can be classified into three
types, namely, scalar-gravitational, vector-gravitational, and
tensor-gravitational perturbations. The first two types are
associated with odd (vector-gravitational) and even (scalar-
gravitational) parity in accordance with the spatial inversion
symmetry of the perturbations and are of great physical
interest [27]. These findings significantly simplify the study
of gravitational perturbation of BH. Subsequently, people
developed many new methods, and further studies on the
gravitational perturbations result in a large number of master
equations for various forms of BHs in 4-dimensions [27–30],
in higher dimensions [26], and for stationary BHs [31, 32].
In fact, gravitational perturbations of a BH may generate
relatively strong gravitational waves (GWs). Recently, the
GWs from a binary BH system have been detected by LIGO
[33], so BH is proven to be the most probable source of GWs
by modern technology. Meanwhile since many alternative
theories of gravity can produce the same GW signal within
the present accuracy in far field, the reported GW detection
still leaves a window for alternative gravity theories [34],
which included the theory of phantom BHs. Therefore, the
properties of QNMs of gravitational perturbation near the
horizon of phantomBHmay provide us essential information
on the underlying physics of gravity theory. This is the main
purpose of the present study.

The thermodynamics of BHs is also an important subject
in BH physics. Some works indicated that Hawking radiation
can be considered as an effective quantum thermal radia-
tion around the horizon [35, 36], where the corresponding
Hawking temperature can be derived from the tunneling rate
[35–40]. Furthermore, a natural correspondence between
Hawking radiation and QNM has been established recently
[35–37, 39, 41].Therefore, in this work, wewill also investigate
the Hawking radiation of regular phantom BH.

The paper is organized as follows. In Section 2, we briefly
review the regular phantom BH solutions and discuss their
properties in three different spacetimes, namely, asymptot-
ically flat, de Sitter (dS), and anti-de Sitter (AdS). In this
work, we focus on the odd parity and even parity gravita-
tional perturbations. As the main component of this paper,
Section 3 includes two subsections. In Section 3.1, we derive
the master equation for odd parity gravitational perturbation
and analyze the corresponding temporal evolution of the
perturbed metric; in Section 3.2, corresponding studies are
carried out for the even parity gravitational perturbation.
In Section 4, we calculate the Hawking radiation of the
regular phantom BH. We summarize our results and draw
concluding remarks in Section 5.

2. The General Metric for Regular
Phantom Black Holes

In this section, we discuss the phantom (𝜖 = −1) regular
BH solution by considering the following static metric with
spherical symmetry:

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑓 (𝑟) + 𝑝 (𝑟)2 (𝑑𝜃2 + sin2𝜃𝑑𝜑2) . (2)

According to the action, (1), the field equation for a self-
gravitating minimally coupled scalar field with an arbitrary
potential 𝑉(𝜙) can be expressed as

𝐺𝜇] = 𝑅𝜇] − 𝑔𝜇]2 (𝑅 − 𝜖𝜙;𝛼𝜙;𝛼 − 2𝑉 (𝜙)) − 𝜖𝜙;𝜇𝜙;] = 0. (3)

By combining the scalar field equation,

𝜖𝜙;𝛼;𝛼 − 𝑑𝑉 (𝜙)𝑑𝜙 = 0, (4)

a regular phantom BH solution can be obtained as

𝑓 (𝑟) = { 𝑐𝑏2 + 1𝑝2 (𝑟) + 3𝑚𝑏3 [ 𝑏𝑟𝑝2 (𝑟) + arctan(𝑟𝑏)]}⋅ 𝑝2 (𝑟) , (5)

where𝑝 (𝑟) = √𝑏2 + 𝑟2, (6)
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𝑉 (𝜙 (𝑟)) = − 𝑐𝑏2 𝑝2 + 2𝑟2𝑝2− 3𝑚𝑏3 {3𝑏𝑟𝑝2 + 𝑝2 + 2𝑟2𝑝2 arctan(𝑟𝑏)} ,
𝜙 (𝑟) = √2𝜖 arctan(𝑟𝑏) + 𝜙0,

(7)

𝑚 is the Schwarzschild mass defined in the usual way,
and 𝑐 and 𝑏 are integration constant and scale parameter,
respectively. Then it is necessary to determine the possible
kinds of spacetime for such phantom BH, which can be
classified as a regular infinity (𝑟 → ∞) to be flat, de Sitter

(dS), or anti-de Sitter (AdS). The corresponding parameters𝑐, 𝑏, 𝑚 should be restricted in each spacetime.
For the asymptotically flat spacetime, in accordance with

(5), one has 𝑐 = −3𝜋𝑚/2𝑏 and𝑚= 2𝑏33 [𝜋𝑏2 − 2𝑏𝑟ℎ + 𝜋𝑟2
ℎ
− 2𝑏2 arctan (𝑟ℎ/𝑏) − 2𝑟2

ℎ
arctan (𝑟h/𝑏)] . (8)

In this case, the spacetime is asymptotically flat, namely, 𝑟 →∞, 𝑓(𝑟) → 1. And 𝑟ℎ is the event horizon of the phantom
BH. We note when 𝑏 → 0 that (5) becomes Schwarzschild
flat spacetime.

For the de Sitter spacetime, one has

𝑐 = − 𝑏2 [(𝑏2 + 𝑟2𝑐 ) arctan (𝑟𝑐/𝑏) − (𝑏2 + 𝑟2ℎ) arctan (𝑟ℎ/𝑏) + 𝑏 (𝑟𝑐 − 𝑟ℎ)](𝑏2 + 𝑟2𝑐 ) (𝑏2 + 𝑟2
ℎ
) arctan (𝑟𝑐/𝑏) − (𝑏2 + 𝑟2𝑐 ) (𝑏2 + 𝑟2

ℎ
) arctan (𝑟ℎ/𝑏) + 𝑏 (𝑟𝑐 − 𝑟ℎ) (𝑏2 − 𝑟𝑐𝑟ℎ) ,𝑚 = 𝑏3 (𝑟2𝑐 − 𝑟2ℎ)3 [(𝑏2 + 𝑟2𝑐 ) (𝑏2 + 𝑟2

ℎ
) arctan (𝑟𝑐/𝑏) − (𝑏2 + 𝑟2𝑐 ) (𝑏2 + 𝑟2

ℎ
) arctan (𝑟ℎ/𝑏) + 𝑏 (𝑟𝑐 − 𝑟ℎ) (𝑏2 − 𝑟𝑐𝑟ℎ)] , (9)

where 𝑟𝑐, 𝑟ℎ are the cosmological horizon and event horizon,
respectively. We note when 𝑏 → 0 that (5) becomes
Schwarzschild dS metric.

For the anti-de Sitter spacetime, we choose𝑓(𝑟) → 𝑟2 with𝑟 → ∞ without loss of generality. By expanding (5) around
infinity, one finds

𝑐 = 2𝑏3 − 3𝜋𝑚2𝑏 ,𝑚
= 2𝑏3 (𝑏2 + 𝑟2ℎ + 1)3 [𝜋𝑏2 − 2𝑏2 arctan (𝑟ℎ/𝑏) − 2𝑟2

ℎ
arctan (𝑟ℎ/𝑏) − 2𝑏𝑟ℎ + 𝜋𝑟2

ℎ
] ,

(10)

where 𝑟ℎ is the event horizon of AdS spacetime. We note
when 𝑏 → 0 that (5) can be returned to Schwarzschild-
AdS spacetime. In this context, the parameter 𝑏 measures
the coupling strength between phantom scalar field and the
gravity for all three spacetimes.

Since the parameters 𝑐, 𝑚 can be expressed in terms of 𝑏,𝑟ℎ, and 𝑟𝑐 (dS), the structures of the regular phantom BH
spacetime are completely determined by 𝑏, 𝑟ℎ, and 𝑟𝑐 (dS) (cf.
Figure 1). One can readily verify that all the spacetimes
are indeed nonsingular even at 𝑟 = 0. As for any asymp-
totically flat spacetime, such flat regular phantom BH has
a Schwarzschild-like structure. However, its tendency of
approaching flat spacetime at infinity becomes slower with
increasing 𝑏. In the dS case, the spacetime is bounded by two
horizons, that is, 𝑟ℎ < 𝑟 < 𝑟𝑐. There is a maximum for 𝑓(𝑟),
and it decreases with increasing 𝑏. For the AdS phantom BH,𝑓(𝑟) → 𝑟2 when 𝑟 → ∞, and for larger 𝑏, the approach to the
asymptotic solution becomes slower.

3. Gravitational Quasinormal Frequencies
for Regular Phantom Black Holes

As proposed by Regge-Wheeler, two important gravitational
perturbations are of odd and even parity. The perturbation
gauge ℎ𝜇] for each type has its own definition. In this section,
we choose the Regge-Wheeler-Zerilli gauge to discuss the
master equation for each perturbation type. Here we take the
magnetic quantum 𝑀 = 0 to make 𝜑 disappear completely
because all values of 𝑀 lead to the same radial equation
[27]. Since the total number of equations in the even parity
case is bigger than that in odd parity case, the derivation
of the master equation for even parity perturbation is thus
more complicated. Once the master equation is derived,
the effective potential and the corresponding quasinormal
modes can be obtained. We will first discuss the odd parity
gravitational quasinormal frequencies in asymptotically flat,
dS, and AdS spacetimes and then study the case for even
parity. In our work, we consider the metric perturbations not
only of the Ricci curvature tensor and scalar curvature (the
l.h.s. of the Einstein field equation), but also of the energy
momentum tensor (the r.h.s. of the Einstein field equation).
On the other hand, we will not consider the perturbations of
the phantom scalar field. This is because such perturbations
can be canceled out through an appropriate choice of𝑉 in the
action (see Appendix for details).

In order to discuss gravitational perturbation, one may
write down 𝑔𝜇] = 𝑔𝜇] + ℎ𝜇], (11)

where the small perturbation ℎ𝜇] will be divided into odd and
even modes in the subsequent sections.
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Figure 1: The structures of the regular phantom BH’s metric function 𝑓(𝑟) for different values of 𝑏: (a) asymptotically flat spacetime with𝑟ℎ = 1. (b) de Sitter spacetime with 𝑟ℎ = 1, 𝑟𝑐 = 10; (c) anti-de Sitter spacetime with 𝑟ℎ = 1.
3.1. Master Equation and Quasinormal Modes for Odd Parity
Perturbation. The odd parity perturbation ℎ𝜇] has the form
as [27]

ℎ𝜇] = ( 0 0 0 ℎ0 (𝑟, 𝑡)0 0 0 ℎ1 (𝑟, 𝑡)0 0 0 0ℎ0 (𝑟, 𝑡) ℎ1 (𝑟, 𝑡) 0 0 )𝑄𝑝 (𝜃) , (12)

where 𝑄𝑝(𝜃) = sin 𝜃𝑑𝑃𝑙(cos 𝜃)/𝑑𝜃 (𝑃𝑙(cos 𝜃) is the Legendre
function), which satisfies𝑄󸀠󸀠𝑝 − cot (𝜃) 𝑄󸀠𝑝 (𝜃) = −𝑘𝑄𝑝 (𝜃) , (13)

where 𝑘 = 𝑙(𝑙 + 1) and 𝑙 is the angular quantum number.
Then the separation of variables can be carried out by

writing ℎ0(𝑟, 𝑡) = exp(−𝑖𝜔𝑡)ℎ0(𝑟), ℎ1(𝑟, 𝑡) = exp(−𝑖𝜔𝑡)ℎ1(𝑟).

By substituting (5)–(7), (11)–(13) into the field equation (3)
and only keeping the first order perturbation terms, we obtain
the independent perturbation equations as follows:

𝛿𝐺13 = ℎ󸀠0 − 2ℎ0𝑝󸀠𝑝 − 1𝜔𝑝2 {𝑖ℎ1 (−𝜔2𝑝2
+ 𝑓 (−2 + 𝑙 + 𝑙2 + 2𝑝𝑓󸀠𝑝󸀠 + 𝑝2 (2𝑉 (𝜙) + 𝑓󸀠󸀠))
+ 𝑓2𝑝 (𝜖𝑝𝜙󸀠2 + 2𝑝󸀠󸀠))} = 0,

(14)

𝛿𝐺23 = 𝑖𝜔ℎ0𝑓2 + ℎ1𝑓󸀠𝑓 + ℎ󸀠1 = 0. (15)

Equation (15) implies ℎ0 = −(𝑓2/𝑖𝜔)(ℎ1𝑓󸀠/𝑓 + ℎ󸀠1). Substi-
tuting ℎ0 into (14), we get the master equation for odd parity
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Figure 2: The effective potential for odd parity gravitational perturbation in asymptotically flat spacetime, with 𝑟ℎ = 1, 𝑙 = 2 (a) and with𝑟ℎ = 1, 𝑏 = 5 (b).
perturbation:ℎ󸀠󸀠1 + (3𝑓󸀠𝑓 − 2𝑝󸀠𝑝 )ℎ󸀠1 + ℎ1𝑓2𝑝2 {𝑝2 (𝜔2 + 𝑓󸀠2)− 𝑓 (−2 + 𝑙 + 𝑙2 + 2𝑝2𝑉 (𝜙) + 4𝑝𝑓󸀠𝑝󸀠)− 𝑓2𝑝 (𝜖𝑝𝜙󸀠2 + 2𝑝󸀠󸀠)} = 0. (16)

Finally, we renormalize ℎ1 byℎ1 (𝑟) = 𝐵 (𝑟)Φ (𝑟) ; 𝐵 (𝑟) = 𝑝 (𝑟)𝑓 (𝑟) . (17)

By substituting (17) into the master equation, (16), and using
a tortoise coordinate 𝑟∗, the Schrödinger-type wave equation
for this case can be expressed as𝑑2Φ𝑑𝑟2∗ + (𝜔2 − 𝑉𝑜 (𝑟))Φ = 0, (18)

where the effective potential for odd parity perturbations𝑉𝑜(𝑟) is𝑉𝑜 (𝑟) = 𝑓𝑝2 [−2 + 𝑙 + 𝑙2 + 2𝑓𝑝󸀠2+ 𝑝2 (2𝑉 (𝜙) + 𝜖𝑓𝜙󸀠2 + 𝑓󸀠󸀠) + 𝑝 (𝑓󸀠𝑝󸀠 + 𝑓𝑝󸀠󸀠)] . (19)

Equation (19) can be used to describe the effective poten-
tial of “odd”-type perturbation𝑉𝑜 in different spacetimes and
be utilized to discuss the relationship between the effective
potential andmodel parameters such as the angular harmonic
index 𝑙 and the parameter 𝑏.

(I) Figures 2, 3, and 4 show the potential functions, tem-
poral evolution of the gravitational perturbation, and
quasinormal frequency obtained by WKB method in
asymptotically flat spacetime.

(i) The form of the effective potential as a function
of 𝑟 for different values of 𝑙 and 𝑏 is shown in
Figure 2. From the left plot, one sees that as𝑏 increases, the shape of the effective potential
becomes smoother. The maximum of the effec-
tive potential decreases with increasing 𝑏 and
the position of the peak shifts to the right. From
the right plot, we see that, with the increase of
angular quantumnumber 𝑙, themaximumof the
effective potential also increases. 𝑉(𝑟) is always
found to be positive definite outside the event
horizon, which indicates that the corresponding
QNMs are likely to be stable.

(ii) We adopt the finite differencemethod to analyze
the stability of such BH. By applying the coordi-
nate transformation (𝑡, 𝑟) → (𝜇, ]) with 𝜇 = 𝑡 −𝑟∗, ] = 𝑡+𝑟∗ to (16) and integrating numerically
using the finite difference method [24, 42–44],
we obtain the differential equation for ℎ1(𝜇, ]).
Figure 3 shows the stability of a regular phantom
BH in asymptotically flat spacetime with 𝑟ℎ =1. The temporal evolution of each mode in
Figure 3 corresponds to a corresponding case
in Figure 2. Since 𝑉(𝑟) decreases significantly
with the growth of 𝑏, the decay rate (|Im(𝜔)|)
becomes smaller and oscillation frequency (i.e.,
Re(𝜔)) also drops; as 𝑙 increases, the values
of 𝑉(𝑟) are raised correspondingly, so that
the oscillation frequency (i.e., Re(𝜔)) slightly
increases together with the decay rate (|Im(𝜔)|).

(iii) We employ the WKB approximation [45, 46]
to evaluate the quasinormal frequencies.
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Figure 3:The temporal evolution of odd parity gravitational perturbation in asymptotically flat phantom BH, with 𝑟ℎ = 1, 𝑙 = 2 (a) and with𝑟ℎ = 1, 𝑏 = 5 (b).
The complex frequency 𝜔 is determined by
[47]𝜔2 = [𝑉0 + (−2𝑉󸀠󸀠0 )1/2 𝑃]− 𝑖 (𝑛 + 12) (−2𝑉󸀠󸀠0 )1/2 (1 + Ω) , (3rd order) ,

𝑖 𝜔2 − 𝑉0√−2𝑉󸀠󸀠0 − 𝑃 − Ω − 𝑃4 − 𝑃5 − 𝑃6 = 𝑛 + 12 ,(6th order) ,
(20)

where 𝑉(𝑛)0 = (𝑑𝑛𝑉/𝑑𝑟𝑛∗)|𝑟∗=𝑟∗(𝑟ℎ), 𝑃, Ω, 𝑃4, 𝑃5,
and 𝑃6 are presented in [47, 48].
By making use of (19), we evaluate the QNM
frequencies by employing the 6th order WKB
method (see Figure 4). Figure 4 shows that
the fundamental quasinormal modes (𝑛 = 0)
have the smallest imaginary parts, as the modes
decay the slowest. As 𝑛 increases, the imaginary
part of the corresponding quasinormal mode
becomes bigger for given 𝑙 and 𝑏. For a given
principal quantum number 𝑛, both the real and
the imaginary parts of the frequency decrease
with increasing 𝑏; on the other hand, the real
part of the frequency increases significantly
with the angular quantum number 𝑏, while
the imaginary part also increases slightly with
increasing 𝑏.

(II) Figures 5, 6, and 7 show the potential function bet-
ween the event horizon 𝑟ℎ and cosmological horizon
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Figure 4: Calculated quasinormal frequencies of odd parity grav-
itational perturbation for 𝑟ℎ = 1 in asymptotically flat spacetime.
Each group of dots, from top-right to bottom-left, corresponds to
QNM frequencies obtained by assuming different values of 𝑏 =0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, respectively.

𝑟𝑐, temporal evolution of the gravitational field, and
quasinormal frequency obtained by WKB method in
dS spacetime.

(i) The form of the effective potential in dS space-
time is similar to that in asymptotically flat
spacetime. Figure 5 indicates that, for given𝑙 and 𝑟, the effective potential decreases with
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Figure 5: The effective potential for odd parity gravitational perturbation in dS spacetime with 𝑟ℎ = 1, 𝑟𝑐 = 10, 𝑙 = 2 (a) and with 𝑟ℎ =1, 𝑟𝑐 = 10, 𝑏 = 5 (b).
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Figure 6: The temporal evolution of odd parity gravitational perturbation for dS phantom BH with 𝑟ℎ = 1, 𝑙 = 2 (a), and with 𝑟ℎ = 1, 𝑏 = 5
(b).

increasing 𝑏; and for given 𝑏 and 𝑟, it increases
with increasing angular quantum number 𝑙. In
the range 𝑟ℎ < 𝑟 < 𝑟𝑐, 𝑉(𝑟) is also positive
definite, which implies that the corresponding
QNM is likely to be stable.

(ii) Figure 6 studies the stability of a regular phan-
tom with 𝑟ℎ = 1, 𝑟c = 10. Similar to the case
in asymptotically flat spacetime, it is found that,
with increasing 𝑏, the oscillation frequency (i.e.,
Re(𝜔)) decreases, while the decay rate (|Im(𝜔)|)
becomes smaller. Therefore, for smaller value of

𝑏, the BH returns to its stable state more quickly
as small perturbation dies out faster.

(iii) In accordancewith the results of finite difference
method, the frequencies presented in Figure 7
by WKB method also show that, for given𝑛 and 𝑙, the decay rate of perturbation (i.e.,|Im(𝜔)|) decreases with increasing 𝑏. Moreover,
it illustrates that, for a given 𝑏, the fundamental
mode can be found at 𝑛 = 0, 𝑙 = 2. Due to
the smallness of the real parts of the frequencies,
these modes of oscillation persist for longer
time.
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Figure 7: Calculated quasinormal frequencies of odd parity grav-
itational perturbation with 𝑟ℎ = 1, 𝑟𝑐 = 10 in dS spacetime.
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QNM frequencies obtained by assuming different values of 𝑏 =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, respectively.

(III) Figures 8 and 9 show the potential function beyond
the event horizon 𝑟 > 𝑟ℎ and the temporal evolution
of the gravitational perturbation in AdS spacetime.

(i) The form of the effective potential in AdS
spacetime is quite different from that in asymp-
totically flat and dS spacetime. Figure 8 indicates
that the value of𝑉(𝑟) is divergent as 𝑟 → ∞.The
effects of 𝑏 and 𝑙 on the effective potential are
similar to previous cases; for a given 𝑟, smaller 𝑏
or larger 𝑙 leads to bigger 𝑉.

(ii) Figure 9 studies the stability of AdS regular
phantom BH spacetime with 𝑟ℎ = 1. The
results are consistent with the above calculated
potential function. It is again inferred that the
fundamental mode of gravitational perturba-
tion in odd parity occurs for 𝑙 = 2 and larger 𝑏,
since such kind of QNM will take a longer time
to be stable.

3.2. Master Equation and Quasinormal Modes for Even Parity
Perturbation. Another canonical form for the gravitational
perturbations is of even parity. After applying the separation
of variables, it can be expressed as [27, 28]

ℎ𝜇] = exp (−𝑖𝜔𝑡)(
(

𝐻0 (𝑟) 𝑓 (𝑟) 𝐻1 (𝑟) 0 0𝐻1 (𝑟) 𝐻2 (𝑟)𝑓 (𝑟) 0 00 0 𝑝 (𝑟)2𝐾 (𝑟) 00 0 0 𝑝 (𝑟)2𝐾 (𝑟) sin2𝜃
)
)

𝑃𝑙 (cos 𝜃) , (21)

where 𝐻0(𝑟),𝐻1(𝑟),𝐻2(𝑟), 𝐾(𝑟) are unknown functions for
the even parity perturbation. It is noted that these functions
are not independent.

Now we derive the first order perturbation equations
by substituting (5)–(7), (11), and (21) into (3) and find the
relationships among 𝐻0(𝑟),𝐻1(𝑟),𝐻2(𝑟), 𝐾(𝑟):𝛿𝐺34 = 0 ⇐⇒𝐻0 = 𝐻2 (22)

𝛿𝐺12 = 0 ⇐⇒𝜒1 (𝑟)𝑖𝜔 𝐻1 − 𝑝󸀠𝑝 𝐻0 + 𝐾󸀠 + (− 𝑓󸀠2𝑓 + 𝑝󸀠𝑝 )𝐾 = 0, (23)

𝛿𝐺11 = 0 ⇐⇒
− 𝜒0 (𝑟)𝐻0 − 𝑝󸀠𝐻󸀠0𝑝 − (−2 + 𝑙 + 𝑙2)𝐾2𝑓𝑝2

+ ( 𝑓󸀠2𝑓 + 3𝑝󸀠𝑝 )𝐾󸀠 + 𝐾󸀠󸀠 = 0, (24)

𝛿𝐺23 = 0 ⇐⇒
− 𝑖𝜔𝐻1𝑓 − 𝑓󸀠𝐻0𝑓 − 𝐻󸀠0 + 𝐾󸀠 = 0, (25)

𝛿𝐺22 = 0 ⇐⇒2𝑖𝜔𝐻1𝑓 + 𝐻󸀠0 − (1 + 𝑓󸀠𝑝2𝑓𝑝󸀠)𝐾󸀠
+ (−2 + 𝑙 + 𝑙2) 𝑓 − 2𝜔2𝑝22𝑓2𝑝𝑝󸀠 𝐾
− −2 + 𝑙 + 𝑙2 + 2𝑝2𝑉 (𝜙)2𝑓𝑝𝑝󸀠 𝐻0 = 0,

(26)
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Figure 8:The effective potential for odd parity gravitational perturbation in AdS spacetime with 𝑟ℎ = 1, 𝑙 = 2 (a) and with 𝑟ℎ = 1, 𝑏 = 1 (b).
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Figure 9: The temporal evolution of odd parity gravitational perturbation in AdS phantom BH spacetime with 𝑟ℎ = 1, 𝑙 = 2 (a) and with𝑟ℎ = 1, 𝑏 = 1 (b).
where

𝜒1 (𝑟) = −2 + 𝑙 + 𝑙2 + 2𝑓𝑝󸀠2 + 𝑝2 (2𝑉 (𝜙) + 𝜖𝑓𝜙󸀠2) + 2𝑝 (𝑓󸀠𝑝󸀠 + 2𝑓𝑝󸀠󸀠)2𝑝2 ,
𝜒0 (𝑟) = −2 + 𝑙 + 𝑙2 + 4𝑓𝑝󸀠2 + 2𝑝2 (𝑉 (𝜙) + 𝜖𝑓𝜙󸀠2) + 4𝑝 (𝑓󸀠𝑝󸀠 + 2𝑓𝑝󸀠󸀠)2𝑓𝑝2 . (27)
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Solving (23),𝐻0 can be expressed as

𝐻0 = 𝑝 {(𝜒1 (𝑟) /𝑖𝜔)𝐻1 + 𝐾󸀠 − (𝑓󸀠/2𝑓 − 𝑝󸀠/𝑝)𝐾}𝑝󸀠 . (28)

We define a function Ψ(𝑟) satisfying𝐻1 = −𝑖𝜔 𝑟𝑓 (Ψ + 𝐾) . (29)

By observing (22), (28), and (29), it turns out that we need to
express𝐾 by Ψ in order to express all perturbation functions𝐻0(𝑟), 𝐻1(𝑟), 𝐻2(𝑟), and 𝐾(𝑟) in terms of Ψ. This can be
achieved by substituting (28) and (29) into (25) and (26)
and evaluating the subtraction (25)-(26), and one eventually
obtains the following expression:(−2 + 𝑙 + 𝑙2 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠)𝐾󸀠2𝑓𝑝󸀠2− (𝑟𝜔2𝑓2 + 𝜒2 (𝑟))Ψ

− (𝑟𝑝󸀠 (𝑟) − 𝑝 (𝑟)𝑓 (𝑟)2 𝑝󸀠 (𝑟) 𝜔2 + 𝜒3 (𝑟))𝐾 = 0,
(30)

where

𝜒2 (𝑟) = 𝑟 (−2 + 𝑙 + 𝑙2 + 2𝑝2𝑉 (𝜙) + 2𝑝𝑓󸀠𝑝󸀠)2𝑓2𝑝󸀠2 𝜒1 (𝑟) ,
𝜒3 (𝑟) = 14𝑓2𝑝󸀠2 (𝑓󸀠 (−4𝑓𝑝󸀠2 + 𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2)

+ 2𝑟𝜒1 (2𝑝𝑓󸀠𝑝󸀠 + 𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2) + 2𝑝𝑓󸀠2𝑝󸀠− 4𝑓𝑝𝑝󸀠𝑉 (𝜙)) .
(31)

Substituting (28)–(31) into (24),𝐾 can be solved as

𝐾 (𝑟) = 𝐴1 (𝑟) Ψ󸀠 (𝑟) + 𝐴2 (𝑟) Ψ (𝑟) , (32)

where 𝐴1(𝑟), 𝐴2(𝑟) are
𝐴1 (𝑟) = − (2𝑟𝑓𝑝2𝜒1𝑝󸀠 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠 − 2)) {4𝑝𝜒3𝑝󸀠2 (𝑝󸀠󸀠𝑝 + 𝑝󸀠2 − 𝑝2𝜒0) 𝑓3 − 2𝑝2𝑝󸀠 (𝜒0 (𝑙2 + 𝑙+ 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠 − 2) − 2𝜒3 (𝑟𝜒1 + 𝑓󸀠) 𝑝󸀠2) 𝑓2 + (2𝑉 (𝜙) 𝜒0 (2𝑟𝜒1 + 𝑓󸀠) 𝑝5 + (𝜒0 (4𝜔2 + 3𝑓󸀠2 + 6𝑟𝜒1𝑓󸀠) 𝑝󸀠+ 2𝑉 (𝜙) (𝑝󸀠 (2𝑟𝜒󸀠1 + 𝑓󸀠󸀠) − 𝑓󸀠𝑝󸀠󸀠 + 2𝜒1 (𝑝󸀠 − 𝑟𝑝󸀠󸀠))) 𝑝4 + (𝜒0 (−4𝑟𝜔2𝑝󸀠2 + 2 (𝑙2 + 𝑙 − 2) 𝑟𝜒1 + (𝑙2 + 𝑙 − 2) 𝑓󸀠)+ 𝑝󸀠 (−4𝑝󸀠󸀠𝜔2 + 2𝑉 (𝜙) (2𝑟𝜒1 + 𝑓󸀠) 𝑝󸀠 + 6𝑟𝑓󸀠𝑝󸀠𝜒󸀠1 + 3𝑓󸀠𝑝󸀠𝑓󸀠󸀠 − 3𝑓󸀠2𝑝󸀠󸀠 + 6𝜒1𝑓󸀠 (𝑝󸀠 − 𝑟𝑝󸀠󸀠))) 𝑝3 + (−4𝜔2𝑝󸀠3+ 3𝑓󸀠2𝑝󸀠3 + 4𝑟𝜔2𝑝󸀠󸀠𝑝󸀠2 − 2 (𝑙2 + 𝑙 − 2)𝑉 (𝜙) 𝑝󸀠 + 2𝑙2𝑟𝜒󸀠1𝑝󸀠 + 2𝑙𝑟𝜒󸀠1𝑝󸀠 − 4𝑟𝜒󸀠1𝑝󸀠 + 𝑙2𝑓󸀠󸀠𝑝󸀠 + 𝑙𝑓󸀠󸀠𝑝󸀠 − 2𝑓󸀠󸀠𝑝󸀠 − 𝑙2𝑓󸀠𝑝󸀠󸀠− 𝑙𝑓󸀠𝑝󸀠󸀠 + 2𝑓󸀠𝑝󸀠󸀠 + 2𝜒1 (3𝑟𝑓󸀠𝑝󸀠3 + (𝑙2 + 𝑙 − 2) 𝑝󸀠 − (𝑙2 + 𝑙 − 2) 𝑟𝑝󸀠󸀠)) 𝑝2 + 2𝑝󸀠2 (2𝑟𝜔2𝑝󸀠2 + (𝑙2 + 𝑙 − 2) 𝑟𝜒1− (𝑙2 + 𝑙 − 2) 𝑓󸀠) 𝑝 − (𝑙2 + 𝑙 − 2)2 𝑝󸀠)𝑓 − 𝑝2𝑝󸀠 (2𝑟𝜒1 (2𝑝󸀠 (𝑝 − 𝑟𝑝󸀠) 𝜔2 + (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2)𝑓󸀠 + 3𝑝𝑓󸀠2𝑝󸀠)

+ 𝑓󸀠 (4𝑝󸀠 (𝑝 − 𝑟𝑝󸀠) 𝜔2 + (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2) 𝑓󸀠 + 3𝑝𝑓󸀠2𝑝󸀠))}−1𝐴2 (𝑟) = − (2𝑝 (2𝜒2𝑝󸀠2 (𝑝󸀠󸀠𝑝 + 𝑝󸀠2 − 𝑝2𝜒0) 𝑓3 + 2𝑝𝜒2 (𝑟𝜒1 + 𝑓󸀠) 𝑝󸀠3𝑓2 + (2𝑟𝑉 (𝜙) 𝜒0𝜒1𝑝4+ (3𝑟𝜒0𝜒1𝑓󸀠𝑝󸀠 + 2𝑉 (𝜙) (𝑟𝑝󸀠𝜒󸀠1 + 𝜒1 (𝑝󸀠 − 𝑟𝑝󸀠󸀠))) 𝑝3+ (𝑟𝜒0 ((𝑙2 + 𝑙 − 2) 𝜒1 − 2𝜔2𝑝󸀠2) + 𝑝󸀠 (2𝑟𝑉 (𝜙) 𝜒1𝑝󸀠 + 3𝑓󸀠 (𝑟𝑝󸀠𝜒󸀠1 + 𝜒1 (𝑝󸀠 − 𝑟𝑝󸀠󸀠)))) 𝑝2+ (𝑟𝑝󸀠 (2𝑝󸀠𝑝󸀠󸀠𝜔2 + (𝑙2 + 𝑙 − 2) 𝜒󸀠1) + 𝜒1 (3𝑟𝑓󸀠𝑝󸀠3 + (𝑙2 + 𝑙 − 2) 𝑝󸀠 − (𝑙2 + 𝑙 − 2) 𝑟𝑝󸀠󸀠)) 𝑝+ 𝑟𝑝󸀠2 (2𝜔2𝑝󸀠2 + (𝑙2 + 𝑙 − 2) 𝜒1)) 𝑓 + 𝑟𝑝𝑝󸀠 (2𝜔2𝑓󸀠𝑝󸀠2 − 𝜒1 (3𝑝𝑝󸀠𝑓󸀠2 + (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2)𝑓󸀠 − 2𝑟𝜔2𝑝󸀠2))))
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⋅ {4𝑝𝜒3𝑝󸀠2 (𝑝󸀠󸀠𝑝 + 𝑝󸀠2 − 𝑝2𝜒0) 𝑓3 − 2𝑝2𝑝󸀠 (𝜒0 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠 − 2) − 2𝜒3 (𝑟𝜒1 + 𝑓󸀠) 𝑝󸀠2) 𝑓2 + (2𝑉 (𝜙)
⋅ 𝜒0 (2𝑟𝜒1 + 𝑓󸀠) 𝑝5 + (𝜒0 (4𝜔2 + 3𝑓󸀠2 + 6𝑟𝜒1𝑓󸀠) 𝑝󸀠 + 2𝑉 (𝜙) (𝑝󸀠 (2𝑟𝜒󸀠1 + 𝑓󸀠󸀠) − 𝑓󸀠𝑝󸀠󸀠 + 2𝜒1 (𝑝󸀠 − 𝑟𝑝󸀠󸀠))) 𝑝4+ (𝜒0 (−4𝑟𝜔2𝑝󸀠2 + 2 (𝑙2 + 𝑙 − 2) 𝑟𝜒1 + (𝑙2 + 𝑙 − 2) 𝑓󸀠)+ 𝑝󸀠 (−4𝑝󸀠󸀠𝜔2 + 2𝑉 (𝜙) (2𝑟𝜒1 + 𝑓󸀠) 𝑝󸀠 + 6𝑟𝑓󸀠𝑝󸀠𝜒󸀠1 + 3𝑓󸀠𝑝󸀠𝑓󸀠󸀠 − 3𝑓󸀠2𝑝󸀠󸀠 + 6𝜒1𝑓󸀠 (𝑝󸀠 − 𝑟𝑝󸀠󸀠))) 𝑝3 + (−4𝜔2𝑝󸀠3+ 3𝑓󸀠2𝑝󸀠3 + 4𝑟𝜔2𝑝󸀠󸀠𝑝󸀠2 − 2 (𝑙2 + 𝑙 − 2)𝑉 (𝜙) 𝑝󸀠 + 2𝑙2𝑟𝜒󸀠1𝑝󸀠 + 2𝑙𝑟𝜒󸀠1𝑝󸀠 − 4𝑟𝜒󸀠1𝑝󸀠 + 𝑙2𝑓󸀠󸀠𝑝󸀠 + 𝑙𝑓󸀠󸀠𝑝󸀠 − 2𝑓󸀠󸀠𝑝󸀠 − 𝑙2𝑓󸀠𝑝󸀠󸀠− 𝑙𝑓󸀠𝑝󸀠󸀠 + 2𝑓󸀠𝑝󸀠󸀠 + 2𝜒1 (3𝑟𝑓󸀠𝑝󸀠3 + (𝑙2 + 𝑙 − 2) 𝑝󸀠 − (𝑙2 + 𝑙 − 2) 𝑟𝑝󸀠󸀠)) 𝑝2 + 2𝑝󸀠2 (2𝑟𝜔2𝑝󸀠2 + (𝑙2 + 𝑙 − 2) 𝑟𝜒1− (𝑙2 + 𝑙 − 2) 𝑓󸀠) 𝑝 − (𝑙2 + 𝑙 − 2)2 𝑝󸀠)𝑓 − 𝑝2𝑝󸀠 (2𝑟𝜒1 (2𝑝󸀠 (𝑝 − 𝑟𝑝󸀠) 𝜔2 + (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2)𝑓󸀠 + 3𝑝𝑓󸀠2𝑝󸀠)+ 𝑓󸀠 (4𝑝󸀠 (𝑝 − 𝑟𝑝󸀠) 𝜔2 + (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2) 𝑓󸀠 + 3𝑝𝑓󸀠2𝑝󸀠))}−1 .

(33)

The resulting master equation can be derived by evaluat-
ing 𝛿𝐺23 + 𝛿𝐺22= 𝑖𝜔𝐻1𝑓 + (−2 + 𝑙 + 𝑙2) 𝑓 − 2𝜔2𝑝22𝑓2𝑝𝑝󸀠 𝐾 − 𝑝𝑓󸀠𝐾󸀠2𝑓𝑝󸀠

− −2 + 𝑙 + 𝑙2 + 2𝑝2𝑉 (𝜙) + 2𝑝𝑓󸀠𝑝󸀠2𝑓𝑝𝑝󸀠 𝐻0 = 0.
(34)

By substituting (28), (29), and (32) into the above equation,
the corresponding master equation is given by

Ψ󸀠󸀠 (𝑟) + Ψ󸀠 (𝑟) {𝐴2𝐴1 + 𝐴󸀠1𝐴1 + −2𝑟𝜒1 − 𝑓󸀠2𝑓 + 𝑝󸀠 (𝑝 (2𝜔2 + 2𝑓𝑉 (𝜙) + 𝑟𝜒1𝑓󸀠 + 𝑓󸀠2) + 2 (−𝑟𝜔2 + 𝑓𝑓󸀠) 𝑝󸀠)𝑓𝑃V } + Ψ (𝑟)
⋅ {−𝑟 (1 + 𝐴2) 𝜒1 (𝑃V − 𝑝𝑓󸀠𝑝󸀠)𝐴1𝑓𝑃V+ 12𝐴1𝑓𝑃V (−4𝑟𝜔2𝑝󸀠2 + 𝐴2 (−𝑃V𝑓󸀠 + 𝑝󸀠 (𝑝 (4𝜔2 + 𝑓󸀠2) − 4𝑟𝜔2𝑝󸀠)) + 2𝑓 (𝑃V𝐴󸀠2 + 2𝐴2𝑝󸀠 (𝑝𝑉 (𝜙) + 𝑓󸀠𝑝󸀠)))} = 0,

(35)

where 𝑃V(𝑟) = −2 + 𝑙 + 𝑙2 + 2𝑝2𝑉(𝜙) + 3𝑝𝑓󸀠𝑝󸀠. Finally, one
defines Ψ(𝑟) = 𝐵1(𝑟)𝐵2(𝑟)Φ(𝑟) and 𝑓(𝑟) = 𝑄(𝑟)𝐹(𝑟) (where𝑄(𝑟) is the coefficient of 𝜔2); the master equation can be
simplified into the following equation:

𝑑2Φ (𝑟)𝑑𝑟2∗ + {𝜔2 − 𝑉𝑒 (𝑟)}Φ (𝑟) = 0, (36)

where 𝑑𝑟∗ = 𝑑𝑟/𝐹(𝑟),
𝑉𝑒 = 𝐹 (𝑟) (2𝑄 (𝑟) (𝐹󸀠 (𝑟) 𝑄󸀠 (𝑟) + 𝐹 (𝑟) 𝑄󸀠󸀠 (𝑟)) − 𝐹 (𝑟) 𝑄󸀠 (𝑟)2) + 4𝑉̃ (𝑟)4𝑄 (𝑟)2 , (37)
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where

𝑄 (𝑟) = 12√𝐴1 (3𝑝𝑓󸀠𝑝󸀠 + 𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2)2 {4𝑓𝑝󸀠 (𝑟 (𝐴󸀠1 − 2) 𝑝󸀠 − 𝑝𝐴󸀠1 + 𝐴2 (𝑝 − 𝑟𝑝󸀠)) (3𝑝𝑓󸀠𝑝󸀠 + 𝑙2 + 𝑙
+ 2𝑝2𝑉 (𝜙) − 2) + 𝐴1 (𝑟2𝜒21 (2𝑝𝑓󸀠𝑝󸀠 + 𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2)2+ 2 (𝑟𝑝󸀠 (4 (𝑙2 + 𝑙 − 2) 𝑓𝑝󸀠󸀠 − 𝑓󸀠𝑝󸀠 (2𝑓𝑝󸀠2 + 3 (𝑙2 + 𝑙 − 2))) + 𝑝3 (𝑉 (𝜙) (6𝑓󸀠𝑝󸀠 − 4𝑓𝑝󸀠󸀠) + 4𝑓𝑝󸀠𝜙󸀠𝑉󸀠 (𝜙))+ 𝑝 (−2𝑓 (3𝑟𝑓󸀠󸀠𝑝󸀠3 + (𝑙2 + 𝑙 − 2) 𝑝󸀠󸀠 + 2𝑟𝑝󸀠3𝑉 (𝜙)) + 𝑓󸀠𝑝󸀠 (2𝑓𝑝󸀠 (3𝑟𝑝󸀠󸀠 + 𝑝󸀠) + 3 (𝑙2 + 𝑙 − 2)) − 8𝑟𝑓󸀠2𝑝󸀠3)
+ 2𝑝2𝑝󸀠 (𝑓 (𝑝󸀠 (3𝑓󸀠󸀠 − 2𝑟𝜙󸀠𝑉󸀠 (𝜙)) + 2𝑉 (𝜙) (2𝑟𝑝󸀠󸀠 + 𝑝󸀠)) + 𝑓󸀠𝑝󸀠 (4𝑓󸀠 − 3𝑟𝑉 (𝜙)))))}1/2 ,𝑉̃ (𝑟) = 116𝐴21 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠 − 2)2 (−16 (𝑝2 (𝑝󸀠2 − 2𝑝𝑝󸀠󸀠)𝑉 (𝜙)2 + (2𝑝𝑓󸀠𝑝󸀠3 − (𝑙2 + 𝑙 − 𝑝2𝑓󸀠󸀠 − 2) 𝑝󸀠2
− 4𝑝2𝑓󸀠𝑝󸀠󸀠𝑝󸀠 − (𝑙2 + 𝑙 − 2) 𝑝𝑝󸀠󸀠)𝑉 (𝜙) + 𝑝󸀠 ((2𝑝󸀠3 − 3𝑝𝑝󸀠𝑝󸀠󸀠) 𝑓󸀠2 − (𝑝󸀠𝑉󸀠 (𝜙) 𝜙󸀠𝑝2 + 2 (𝑙2 + 𝑙 − 2) 𝑝󸀠󸀠) 𝑓󸀠− (𝑙2 + 𝑙 − 2) (𝑝𝑉󸀠 (𝜙) 𝜙󸀠 + 𝑝󸀠𝑓󸀠󸀠))) 𝑓2 − 4 (12𝑉 (𝜙)2 𝑓󸀠󸀠𝑝4 + 2𝑓󸀠 (2𝑝󸀠𝑉 (𝜙)2 + (16𝑝󸀠𝑓󸀠󸀠 − 𝑓󸀠𝑝󸀠󸀠)𝑉 (𝜙)+ 𝑓󸀠𝑝󸀠𝑉󸀠 (𝜙)Ψ󸀠) 𝑝3 + 2 (12𝑓󸀠2𝑓󸀠󸀠𝑝󸀠2 + 𝑉 (𝜙) (5𝑓󸀠2𝑝󸀠2 + 6 (𝑙2 + 𝑙 − 2) 𝑓󸀠󸀠)) 𝑝2 + 𝑓󸀠 (4𝑓󸀠2𝑝󸀠3+ 2 (𝑙2 + 𝑙 − 2)𝑉 (𝜙) 𝑝󸀠 + 16 (𝑙2 + 𝑙 − 2) 𝑓󸀠󸀠𝑝󸀠 − (𝑙2 + 𝑙 − 2) 𝑓󸀠𝑝󸀠󸀠) 𝑝 + (𝑙2 + 𝑙 − 2) 𝑓󸀠2𝑝󸀠2 + 3 (𝑙2 + 𝑙 − 2)2 𝑓󸀠󸀠)𝑓+ (8𝑝𝑝󸀠𝑓󸀠2 + 3 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) − 2) 𝑓󸀠)2)𝐴21 + 4𝐴2𝑓 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠 − 2) (2𝑝𝑝󸀠𝑓󸀠2 + (𝑙2 + 𝑙 − 4𝑓𝑝󸀠2+ 2𝑝2𝑉 (𝜙) − 2)𝑓󸀠 − 4𝑓𝑝𝑉 (𝜙) 𝑝󸀠)𝐴1 − 4𝑓 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠 − 2) (𝐴󸀠1𝑓󸀠 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 2𝑝𝑓󸀠𝑝󸀠− 2) + 2𝑓 (−𝐴󸀠󸀠1 𝑙2 − 𝐴󸀠󸀠1 𝑙 − 2𝐴󸀠1𝑓󸀠𝑝󸀠2 + 𝐴󸀠2 (𝑟) (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠 − 2) − 2𝑝2𝑉 (𝜙)𝐴󸀠󸀠1 + 2𝐴󸀠󸀠1− 𝑝𝑝󸀠 (2𝑉 (𝜙)𝐴󸀠1 + 3𝑓󸀠𝐴󸀠󸀠1)))𝐴1 + 4𝐴22𝑓2 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠 − 2)2 − 4𝑓2𝐴󸀠21 (𝑙2 + 𝑙 + 2𝑝2𝑉 (𝜙) + 3𝑝𝑓󸀠𝑝󸀠− 2)2 .

(38)

Here we study the QNMs for even parity perturbation in
asymptotically flat, dS, and AdS spacetimes. Figures 10, 11,
and 12 show the effective potential functions and corre-
sponding temporal evolution of even parity perturbation
in asymptotically flat, dS, and AdS spacetimes, respectively.
We consider the potential in the range 𝑟 > 𝑟ℎ in asymp-
totically flat and AdS spacetimes and 𝑟ℎ < 𝑟 < 𝑟𝑐 in
dS spacetime. Here, the potential functions are all positive
definite so that the corresponding regular phantom BHs are
likely to be stable. Furthermore, in asymptotically flat and
dS spacetimes, the relationships between Re(𝜔), Im(𝜔) and𝑏, 𝑙 are similar to those of odd parity; the differences are in
details. However, the potential function in AdS spacetime
is mostly a convex function, and therefore it approaches
infinity faster than that of odd parity. Nevertheless, the
resulting QNMs in AdS spacetime are also found to be
stable.

4. Hawking Radiation of the Regular
Phantom Black Hole

As mentioned before in Section 2, the interior structures of
regular BHs are quite different from those of traditional ones.
In order to achieve a better understanding of the properties
of such regular phantom BHs, it is meaningful to investigate
the correspondingHawking radiation, which is considered to
be a promisingmethod to study the thermodynamics of BHs.

From a quantum mechanics viewpoint, QNM carries
information on the quantization of the system around BH’s
horizon [35–37, 39, 41]. The Hawking radiation spectrum
provides an interpretation of such quantization at an effective
temperature [25, 35, 36]. In this paper, we adopt a simple and
effective method (i.e., Hamilton-Jacobi equation) to analyze
the Hawking radiation of the regular phantom BH. Based
on the tunneling theory of Hawking radiation [49, 50], this
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Figure 10: (a) The effective potential of even parity perturbation in asymptotically flat spacetime. (b) The corresponding temporal evolution
of even parity gravitational perturbation field in asymptotically flat spacetime. Calculations are carried out by using 𝑟ℎ = 1.
method was first put forward by Srinivasan in 1999 [51] and
plays an important role in recent studies [52, 53].

Up to this point, we have been using the natural units in
the calculations of QNM. However, since the Planck constantℏ is very important in the study of tunneling radiation, we

will explicitly write it down here in the field functions. In
other words, ℎ0 and ℎ1 of (12) are now rewritten as ℎ0(𝑟, 𝑡) =
exp(−𝑖𝜔𝑡/ℏ)ℎ0(𝑟), ℎ1(𝑟, 𝑡) = exp(−𝑖𝜔𝑡/ℏ)ℎ1(𝑟), and (21)
becomes

ℎ𝜇] = exp(−𝑖𝜔𝑡ℏ )((((((
(

𝐻0 (𝑟) 𝑓 (𝑟) 𝐻1 (𝑟) 0 0
𝐻1 (𝑟) 𝐻2 (𝑟)𝑓 (𝑟) 0 00 0 𝑝 (𝑟)2𝐾 (𝑟) 00 0 0 𝑝 (𝑟)2𝐾 (𝑟) sin2𝜃

))))))
)

𝑃𝑙 (cos 𝜃) . (39)
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Figure 11: (a) The effective potential of even parity perturbation in dS spacetime. (b) The corresponding temporal evolution of even parity
gravitational perturbation. In the calculations, we choose 𝑟ℎ = 1, 𝑟𝑐 = 10.
The corresponding Schrödinger-type equation can be ex-
pressed as 𝑑2Φ𝑑𝑟2∗ + (𝜔2ℏ2 − 𝑉 (𝑟))Φ = 0. (40)

Since the Hawking radiation reflects BH’s radial proper-
ties in the vicinity of the horizon, it is worthwhile to explicitly
discuss radial field equations. According to (40), near the
horizons 𝑟 → 𝑟ℎ, one has 𝑉𝑜 → 0 and 𝑉𝑒 → 0, so that the
field equation can be simplified to𝑑2Φ (𝑟)𝑑𝑟2∗ + 𝜔2ℏ2 Φ (𝑟) = 0. (41)

By introducingΦ(𝑟) = 𝐶𝑒−(𝑖/ℏ)𝑅(𝑟) and using the semiclassical
approximation to neglect the terms ofO(ℏ), as ℏ is small, one
obtains −𝑓2𝑅󸀠2 + 𝜔2 = 0. (42)

Therefore, 𝑅󸀠(𝑟) = ±𝜔/𝑓, where ± represents ingoing or
outgoing mode. The above equation is no other than the
Hamilton-Jacobi equation at the horizon. We note that the
above argument also applies to the case of asymptotically
dS spacetime, where the event horizon 𝑟ℎ and cosmological
horizon 𝑟𝑐 should be both considered. In fact, according to the
Hamilton-Jacobi equation 𝑔𝜇](𝜕𝑆/𝜕𝑥𝜇)(𝜕𝑆/𝜕𝑥])+𝑚2 = 0, the
radialHamilton-Jacobi equation can be transformed into (42)
at the horizon, so we can use this result to study the Hawking
tunneling radiation under semiclassical approximation [54–
56].

Owing to the coordinate singularity at the horizon, the
integration from inner surface of horizon to outer surface
shall be carried out by using ResidueTheorem:

𝑅 (𝑟ℎ) = ± 𝑖𝜋𝜔𝑓󸀠 (𝑟ℎ) . (43)
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Figure 12: (a) The effective potential of even parity perturbation in AdS spacetime. (b)The corresponding temporal evolution of even parity
gravitational perturbation in AdS spacetime. In the calculations, we choose 𝑟ℎ = 1.
Then, the tunneling rate of Hawking radiation is [57, 58]Γ = exp (−2 Im (𝑅+))

exp (−2 Im (𝑅−)) = exp(− 4𝜋𝜔𝑓󸀠 (𝑟ℎ)) . (44)

According to the relationship between tunneling rate Γ and
the Hawking temperature, the temperature of the BH in the
vicinity of the event horizon 𝑟ℎ is𝑇𝐻 = 𝑓󸀠 (𝑟ℎ)4𝜋 . (45)

From the inside of the cosmological horizon 𝑟𝑐 in dS space-
time, we consider the incident wave solution of Hawking
radiation. Therefore, there is an extra minus sign in the
resulting expression of the Hawking temperature in the
neighborhood of the cosmological horizon [59] as follows:𝑇𝑐 = −𝑓󸀠 (𝑟𝑐)4𝜋 . (46)

Figure 13 shows the impact of the parameter 𝑏 on the
thermodynamics of a regular phantom BH for different
spacetimes. In asymptotically flat spacetime, the Hawking
temperature 𝑇𝐻 decreases monotonously with increasing 𝑏
and a given 𝑟ℎ; and for a given 𝑏, 𝑇𝐻 becomes smaller with
increasing 𝑟ℎ. In asymptotically AdS spacetime, however,
the Hawking temperature 𝑇𝐻 increases monotonously with
increasing 𝑏 and a given 𝑟ℎ; and for a given 𝑏, 𝑇𝐻 becomes
larger with increasing 𝑟ℎ. In asymptotically dS spacetime,
the relationship between 𝑇𝐻 and the event horizon 𝑟ℎ is
similar to that in asymptotically flat case, while the Hawking
temperature 𝑇𝐶 in the vicinity of the cosmological horizonℎ𝑐 also decreases monotonously with increasing 𝑏, and it
decays faster than other cases. The different dependence
of Hawking temperature on 𝑏 probably results from the
distinctive spacetime structure of AdS phantom BH from
others.
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Figure 13: The Hawking temperature as a function of 𝑏 in asymptotically flat and dS spacetimes.

5. Conclusions and Remarks

We studied static spherically symmetric solutions of regular
phantom BH in asymptotically flat, dS, and AdS spacetimes
and then investigated the QNMs of gravitational perturba-
tions as well as Hawking radiations for these BH spacetimes.
In our calculations, besides the metric perturbation 𝛿𝑔𝜇] of
the Ricci curvature tensor and scalar curvature, its effect
on the energy momentum tensor of the matter field is also
considered. In the derivation of the master equation for
even parity, we made use of the method proposed in [26].
However, the BH metric in this paper is a self-gravitating
solution of a minimally coupled scalar field with an arbitrary
potential rather than the Lovelock equations, so that it does
not satisfy the relation of Eq. (5.4) in [26]. As a result, the
obtained master equation is more complicated. It is found
that the calculated effective potential of AdS spacetime in the
limit 𝑟 → ∞ is very different from those of asymptotically
flat and dS spacetimes. For the asymptotical AdS spacetime,
the effective potentials diverge at infinity, which implies

that the wave function Φ should vanish in this limit [60–
64]. At the outside of the event horizon, on the other
hand, the corresponding wave function must be an incoming
wave. The distinct nature of AdS BH spacetime leads to
the fact that some traditional numerical methods such as
WKB approximation, continuous fraction method cease to
be valid. In our calculations, we therefore employed the finite
differencemethod to numerically calculate the temporal evo-
lution of small gravitational perturbations. The relationships
between Hawking temperature and parameters such as 𝑏, 𝑟ℎ
in different spacetime are also studied.

Owing to the importance of the parameter 𝑏, which
carries the physical content of the coupling strength between
phantom scalar field and the gravity, we studied the depen-
dence of various physical quantities on this specific param-
eter, among others. From the above calculated results, we
draw the following conclusions. For odd parity, in asymptotic
flat and dS spacetime, the perturbation frequency (Re(𝜔))
becomes smaller and the decay rate (|Im(𝜔)|) decreases when𝑏 increases. The perturbation frequency (Re(𝜔)) and the



Advances in High Energy Physics 17

decay rate (|Im(𝜔)|) both increase with increasing 𝑙. For even
parity, the shape of the effective potential in the vicinity of
the event horizon is very different from that for odd parity.
In particular, 𝑉𝑒(𝑟) decreases monotonically in the range 𝑟 >𝑟ℎ, which is caused by the metric transformation 𝐹(𝑟) =𝑓(𝑟)/𝑄(𝑟). However, our numerical calculations show that
the resultant gravitational perturbations are stable in all three
different spacetime backgrounds. The Hawking temperature𝑇𝐻 (and 𝑇𝑐) of the phantom BH decreases with increasing 𝑏
in asymptotically flat and dS spacetimes. On the contrary, in
AdS spacetime, the temperature 𝑇𝐻 increases with increasing𝑏. These results reflect distinct natures of the horizons of
different spacetimes.

Recently, another type of regular phantom BH, which is
a solution of Einstein-Maxwell equations, was proposed by
Lemos and Zanchin [65]. The properties of interior as well
as exterior structures were investigated. It is meaningful to
investigate the stability of such BH solution and compare it
with the phantom BH in the present paper.

Appendix

We note that 𝑉(𝜙(𝑟)) in (7) is just the 0-order solution.
However, when we investigate the perturbation in the BH
background, the potential could, in principle, be expanded
to higher order terms. Since the higher order terms of 𝑉(𝜙)
have not been determined yet, we can freely choose the form
of such higher order terms to cancel out the contributions
of the perturbation of phantom scalar field. In the Appendix,
we carry out explicit calculations to show that this is indeed
possible.

We consider the following metric and phantom scalar
field: 𝑔𝜇] = 𝑔𝜇] + ℎ𝜇],𝜙 = 𝜙 + 𝜙1, (A.1)

where𝑔𝜇], 𝜙 are backgroundmetric and phantom scalar field,
respectively, and 𝜙1 represents the first order perturbation of
phantom scalar field. Then𝑔𝜇] = 𝑔𝜇] − ℎ𝜇] + ℎ𝜇𝛼ℎ]𝛼. (A.2)

The corresponding metric and potential of phantom scalar
field can be expressed as√−𝑔 = √−𝑔 + √−𝑔1 + √−𝑔2 + ⋅ ⋅ ⋅ ,𝑅 = 𝑅 + 𝑅1 + 𝑅2 + ⋅ ⋅ ⋅ ,𝑉 (𝜙) = 𝑉 + 𝑉1 + 𝑉2 + ⋅ ⋅ ⋅ , (A.3)

where the superscript – and subscripts 1, 2 represent the
background quantities and the first and the second order per-
turbations, respectively. Therefore, the action of the gravity
with the phantom scalar field, (1), can be expanded as𝑆 = 𝑆 + 𝑆1 + 𝑆2 + ⋅ ⋅ ⋅ , (A.4)

where𝑆 = ∫𝑑4𝑥√−𝑔 (𝑅 + 𝜖𝑔𝜇]𝜙,𝜇𝜙,] − 2𝑉) ,𝑆1 = ∫𝑑4𝑥 {√−𝑔 [𝑅1 + 𝜖 (2𝜙,𝜇𝜙,𝜇1 − ℎ𝜇]𝜙,𝜇𝜙,])− 2𝑉1] + √−𝑔1 (𝑅 + 𝜖𝑔𝜇]𝜙,𝜇𝜙,] − 2𝑉)} ,𝑆2 = ∫𝑑4𝑥 {√−𝑔 [𝑅2+ 𝜖 (𝜙1,𝜇𝜙,𝜇1 − 2ℎ𝜇]𝜙,𝜇𝜙1,] + ℎ𝜇𝛼ℎ]𝛼𝜙,𝜇𝜙,]) − 2𝑉2]+ √−𝑔1 [𝑅1 + 𝜖 (2𝜙,𝜇𝜙,𝜇1 − ℎ𝜇]𝜙,𝜇𝜙,]) − 2𝑉1]+ √−𝑔2 (𝑅 + 𝜖𝑔𝜇]𝜙,𝜇𝜙,] − 2𝑉)} .

(A.5)

In the background equation, there is no effect of 𝑉1 and 𝑉2,
while in the perturbed equation we can always choose the
form of the perturbed potential 𝑉1, 𝑉2 as𝑉1 = 𝜖𝜙,𝜇𝜙,𝜇1 ,𝑉2 = 𝜖2𝜙1,𝜇𝜙,𝜇1 − 𝜖ℎ𝜇]𝜙,𝜇𝜙1,], (A.6)

to cancel out the contributions from the phantom scalar field
perturbation 𝜙1. Therefore, in the text, we do not explicitly
consider the perturbation of the phantom field.
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