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Abstract

The structural and photoluminescence properties at room temperature of CeO2 nanoparticles synthesized by a microwave-assisted
hydrothermal method (MAH) under different soaking times on KOH mineralizer added to a cerium ammonium nitrate aqueous solution were
undertaken. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL)
measurements were employed. XRD revealed that the nanoparticles are free of secondary phases and crystallize in the cubic structure. The
UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. The most
intense PL emission was obtained for nanoparticles which represent a lower particle size.
& 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

Order–disorder effects are the keys to many unsolved
structural problems and unexplained structure-related proper-
ties in solid materials. In particular, structural order–disorder is
always present in real materials and may play an important role
in technological applications by altering their electronic and
optical properties. Therefore, physical principles that govern
the structural state of a given perovskite and how that state
may change have long been the subject of investigation and
debate. Ceria (CeO2) has been considered an important
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nanomaterial for applications in catalysts [1,2], fuel cells [3],
ultraviolet absorbers [4], hydrogen storage materials [5],
oxygen sensors [6], optical devices [7], polishing materials
[8], and for which the use of nanocrystalline powders is an
important factor. Several methods have been developed to
prepare ultrafine Ce1−xGdxO2 powder, including hydrothermal
[10], precipitation (for oxalate [11], carbonate [12,13], per-
oxide [9], and hydroxide [14]), polymeric precursor [15,16],
complexion with citric acid [15], the flow method [17],
organometallic decomposition [18] and the microwave-
assisted heating technique [19–21].

Among the various methods, the hydrothermal crystalliza-
tion is an interesting process to directly prepare pure fine oxide
powders with reduced contamination and low synthesis
temperature. The conventional-hydrothermal method requires
longer soaking times at a low temperature (below 200 1C) to
obtain the ceria powders. For this reason, the introduction of
microwave heating to the conventional-hydrothermal method
is advantageous for the synthesis of various ceramic powders
because microwave heating permits a reduction of processing
time and energy cost. Likewise, particles with desired size and
shape can be produced if parameters such as solution pH,
reaction temperature, reaction time, solute concentration and
the type of solvent are carefully monitored [22]. A modifica-
tion of the hydrothermal method developed by Komarneni
et al. [23–25] involves the introduction of microwaves during
the hydrothermal synthesis to increase the kinetics of crystal-
lization by one to two orders of magnitude compared to the
conventional hydrothermal. The microwave-assisted hydro-
thermal (MAH) method shows advantages such as rapidity,
convenience and cost-effectiveness. Ceria systems with nano-
sized particles were successfully synthesized by the MAH
method utilizing a relatively low temperature and short
reaction time [26]. Here, the authors describe the formation
conditions of ceria via the MAH method reported in detail, and
the advantages of microwave irradiation introduced.

As we know, there are few works describing MAH route for
the synthesis of pure CeO2 nanoparticles. Gao et al. [27]
reported for the first time the preparation of ceria nanoparticles
(1.6 nm) and nanorods (20 nm) under microwave-assisted
conditions. Corradi et al. [28] also reported the synthesis of
cubic CeO2 crystals (5.7 nm) under microwave-assisted hydro-
thermal route around 194 1C for only 5 min. No calcination
process or surfactant was required. The MAH method is
getting very attractive in all areas of synthetic chemistry
because it can boost some advantages over other synthetic
methods [29]. This method has been extensively used in
organic synthesis [30–32] and more recently this technique
has also been widely applied to prepare inorganic nanostruc-
tured materials [33–36] with a wide range of applications
[37–39]. In particular, Bilecka and Niederberger have reported
the versatility of the method for the synthesis of nanoparticles
[40], while Baghbanzadeh et al. [41] have presented a
complete review on the subject. Silva et al. [42] prepared
SrTi1−xFexO3 nanocubes by means of a microwave-assisted
hydrothermal (MAH) method at 140 1C. According to high-
resolution transmission electron microscopy (HRTEM) results,
these nanocubes are formed by a self-assembly process of
small primary nanocrystals. In the another paper of the group
[43], BaZrO3 (BZO) nanoparticles were nucleated, grown and
subsequently self-assembled into a 3D decaoctahedronal archi-
tecture via a microwave-assisted hydrothermal (MAH) method.
A theoretical model, based on the presence of uncoordinated
bonds and/or charge distribution in the distorted constituent
clusters (ZrO6) and (BaO12) of the material, can be related to
the change in both surface and internal defects during crystal
growth. BaZrO3 microcrystals were also obtained using the
microwave assisted hydrothermal method (MAH) at 140 1C
for 40 min [44]. The growth mechanism for the formation of
BaZrO3 with decaoctahedron-shape was analyzed in detail, and
the nature of the mechanism follows a non-classical growth
process involving mesoscale self-assembly of nanoparticles.
The PL emission is considered to be closely related to the

crystal structure and their corresponding distorted metal–
oxygen polyhedra. Among the properties of pure or doped
cerium oxide nanoparticles, photoluminescence has been the
object of several publications [45–50] but these may appear as
not very conclusive as some experimental facts were not
definitely explained. For example, even the attribution of the
most intense peak at 400 nm to Ce6O11 clusters firstly
proposed by Djuricic and Pickering [51], was considered
hypothetical by the authors themselves. Comparisons of results
from different studies are complicated due to the fact that
different syntheses produce particles with different surfaces or
bulk defects, oxygen vacancies and ratio of reduced Ce3+. The
point is 4 or 5 bands may appear in a relatively narrow region
around 400 nm and their respective attribution is not clear, to
our knowledge.
On this basis, systematic experiments may be useful to

extract reliable information from photoluminescence spectra.
The aim of the present work was to compare photolumines-
cence spectra of CeO2 nanoparticles annealed at different
soaking times obtained in the same experimental conditions
focusing on links between the structure and the photolumines-
cent behavior of CeO2 nanoparticles through a simple and fast
microwave-assisted hydrothermal (MAH) method.
2. Experimental procedure

CeO2 nanoparticles were synthesized by a hydrothermal
microwave route. Cerium(IV) ammonium nitrate (5� 10−3

mol L−1 Ce(NH4)2(NO3)6, 99.9% purity) was dissolved in
80 ml of deionized water under constant stirring for 15 min at
room temperature. Subsequently, 1 ml of 2 M KOH (p.a,
Merck) was slowly added in the solution until the pH 10
was reached. The resulted solution was transferred into a
sealed Teflon autoclave and placed in a hydrothermal micro-
wave (2.45 GHz, maximum power of 800 W). The reactional
system was heat treated at 100 1C for different soaking times
(1, 2, 4 and 8 min) with a heating rate fixed at 10 1C/min. The
pressure in the sealed autoclave was stabilized at 1.2 atm. The
autoclave was cooled to the room temperature naturally. CeO2

nanoparticles were collected and washed with acetone several
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Fig. 1. X-ray diffraction pattern of CeO2 nanoparticles synthesized at 100 1C
by the MAH method under different soaking times: (a) 1 min; (b) 2 min;
(c) 4 min and (d) 8 min.
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times and then dried at 80 1C in an oven. The obtained
nanoparticles were characterized by X-ray powder diffraction
(XRD) using a (Rigaku-DMax/2500PC, Japan) with Cu-Kα
radiation (λ¼1.5406 Å) in the 2θ range from 201 to 751 with
0.2 deg/min. The crystallite size (d) of CeO2 was calculated
using Scherrer equation d¼kλ/β cos θ, where k is constant, λ is
the wavelength of X-rays and β is the full width at half
maximum (FWHM) for (1 1 1) reflection measured from slow
scan where θ is the diffraction angle of the main peak. Raman
spectra were collected (Bruker RFS-100/S Raman spectro-
meter with Fourier transform). A 1064 nm YAG laser was
used as the excitation source, and its power was kept at
150 mW. The FT-IR spectra were recorded with a Bruker
Equinox-55 instrument. Infrared spectroscopy was used for
monitoring the structural changes occurring during the synth-
esis process with the KBr pellet technique. The morphology of
as-prepared samples was observed using a high resolution
field-emission gun scanning electron microscopy FEG-SEM
(Supra 35-VP, Carl Zeiss, Germany). Specimens for TEM
were obtained by drying droplets of the as-prepared samples
from an ethanolic dispersion which had been sonicated for
5 min onto 300 mesh Cu grids. TEM images and SAD patterns
were then obtained at an accelerating voltage of 200 kV by a
Philips model CM 200 instrument. All measurements were
done at the room temperature. Ultraviolet–visible (UV–vis)
spectroscopy for the optical absorbance spectra of CeO2

powders was taken using a Cary 5G equipment. PL properties
were measured with a Thermal Jarrel-Ash Monospec 27
monochromator and a Hamamatsu R446 photomultiplier. The
excitation source was 350.7 nm wavelength of a krypton ion
laser (Coherent Innova) keeping their power at 200 mW. All
measurements were performed at the room temperature.

3. Results and discussion

The powder XRD patterns of the as-prepared ceria nanopar-
ticles showed the same crystalline structure for all the synthesis
conditions used (Fig. 1). All of the peaks can be well-indexed to
a pure cubic structure of CeO2 (space group: Fm3m) with lattice
constant a¼5.411 Å, which is in good agreement with the
JCPDS file for CeO2 (JCPDS 34-394). It is worth noting that
the overwhelmingly intensive diffraction peak is located at
2θ¼28.6601, which is from the [1 1 1] lattice plane of fcc
CeO2. No peak of any other phase was detected. The broad-
ening of the peaks indicates that the crystallite sizes are small
(4–9 nm), following the literature [52]. The average crystallite
sizes calculated by Debye Scherrer are around 5.80, 7.03, 8.80
and 11.50 nm at soaking times of 1, 2, 4 and 8 min, respec-
tively. It is obvious that the soaking time changes the CeO2

crystal growth. As the average diffusion distance for the
diffusing solute is short and the concentration gradient is steep
in concentrated solutions, much diffusing material passes per
unit time through an unit area. A clear evidence that CeO2 is
formed instead Ce(OH)x comes from the fact that nitrate salts of
ceria were preferably used since these salts were easily
dissociable in few milliliters of water and the friable mass
formed (Ce4+) after treating with acid, reacted spontaneously
with the mineralizer to produce a highly exothermic reaction.
When cerium nitrate is used as the precursor salt and reacted
with an acid to dissolve it, the Ce3+ ion is oxidized to Ce4+ ion
and then acidic mass reacts exothermically with the mineralizer.
It forms a by-product salt (KNO3) that surrounds the hydroxide
product. In the oxidizing atmosphere, dehydration occurs,
converting the hydroxide intermediate to oxide. In the MAH
methods, the conversion to oxide is more rapid due to the effect
of energetic radiations assisting the transformation to CeO2

instead Ce(OH)x.
Fig. 2 shows FTIR spectral features of CeO2 samples at a

soaking time of 8 min. Strong intense bands at 3435, 2358,
1589 cm−1 and below 700 cm−1 were observed. The intense
bands at 3435 and 1589 cm−1 correspond to the ν (O–H) mode
of (H-bonded) water molecules and δ (OH), respectively.
Residual water and hydroxy group are usually detected in
the as prepared ceria samples regardless of synthesis method
used [53] and further heat treatment is necessary for their
elimination. The FTIR spectrum of the ceria also exhibits
a strong broad band below 700 cm−1 which is due to the
δ (Ce–O–C) mode. Specifically, the strong absorptive peaks at
400–600 cm−1 were attributed to the Ce–O stretching and
bending vibration, being characteristics of the tetrahedral CeO4

groups in the compounds. The hydroxylation and deprotona-
tion of metal ions can be accelerated by raising the solution
temperature or pressure [54]. A sharp band at 1055 cm−1 was
attributed to the vibrations associated with the incoordination
of the adsorbed NO3

1− ions [55]. Band in the 2358 cm−1

region was attributed to the stretching frequency of the acetone
group. That suggests that the acetone group was chemically
bonded to the surface of the ceria nanocrystals. This is
probably the result of reactions forming chemical bonds
between the nanocrystal surface and the organic-ligand mole-
cule in the unique reaction conditions of supercritical water,
which are essential for the perfect dispersion of nanocrystals in
organic solvents and for the arrangement of individual
nanocrystals into superlattices and new studies should be
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Fig. 2. FT-IR spectra of CeO2 nanoparticles synthesized at 100 1C for 8 min
by the MAH method. Inset of Fig. 2 shows Raman spectra of CeO2

nanoparticles synthesized at 100 1C for 8 minutes by the MAH method under
a soaking time of 8 min.
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performed to avoid its presence. The crystallized nanoparticle
was found to have OH− ions due to the alkali used in the
present reaction conditions. Following the literature, hydrolysis
refers to those reactions of metallic ions with water that
liberate protons and produce hydroxide or oxide solids. Ce4+

ions, which have a low basicity and high charge, undergo
strong hydration. Firstly, Ce4+ ions are hydrolyzed and form
complexes with water molecules or OH− to give [Ce(OH)x
(H2O)y]

(4−x)+, where x+y is the coordination number of Ce4+.
Further polymerization is likely, and both species can serve as
the precursors for the final ceria nanoparticles. In an aqueous
solution, H2O being a polar molecule, tends to take protons
away from coordinated hydroxide, leading to the formation of
CeO2 � nH2O. This process can be described by the following
equations [56]:

Ce4++xOH+yH2O-[Ce(OH)x(H2O)y]
(4−x)+ (1)

[Ce(OH)x(H2O)y]
(4−x)++H2O-CeO2 � nH2O+nH2O+H3O

+ (2)

The inset in Fig. 2 confirms the formation of pure ceria by
FT-Raman spectrum. Cubic fluorite structure-metal dioxides
have a single Raman mode at 464.5 cm−1, which has F2 g
symmetry and can be viewed as a symmetric breathing mode
of the O atoms around each cation. Since only the O atoms
move, the vibrational mode is nearly independent of the cation
mass [57,58]. The fast structural organization of CeO2 particles
processed in MAH can be related to the heating process which
occurs from the interior to the surface. The microwave energy
is transformed into heat through the interaction between
molecules and atoms within the electromagnetic field. This
interaction results in an internal and volumetric heating of the
powders which promotes the formation of temperature gradi-
ents and heat flows.
Fig. 3 illustrates the UV–vis spectral dependence of absor-
bance for the ordered CeO2 particles. The maximum absorption
was located at around 400 nm with respective band gap values
determined from the Kubelka Model [59]. The optical energy
band gap is related to the absorbance and to the photon energy
by the following Eq. (3):

hνα∝ðh1−Eopt
g Þ2 ð3Þ

where α is the absorbance, h is the Planck constant, ν is the
frequency and Eopt

g is the optical band gap [60]. The band gap
was deduced by fitting the absorption data to the direct transition
equation by extrapolating the linear portions of the curves to
absorption equal to zero. In structurally ordered CeO2 particles,
the absorbance measurements suggest a non-uniform band gap
structure with a tail of localized states (see Fig. 3a–d). The
decrease in the optical band gap energy [E(gap)] with the
soaking time can be correlated to the reduction of structural
defects or localized states inside the band gap which decreases
the intermediary energy levels due to the reduction of oxygen
vacancies located at crystal structure. The tendency observed
shows that the optical band gap can be dependent on the
preparation method and heat treatment. This behavior indicates
that these samples present a certain structural order degree in
agreement with the Raman spectra. The estimated band gaps
were ranged between 2.65 and 2.97 eV. The uncertainty of these
values was estimated at 0.05 eV. As soaking time increases, the
optical band gap of the sample initially decreases and then
increases because new levels of energy are formed promoting
the appearance of intermediate electronic levels in the band gap.
The irregularities in the optical band gap values can be related
with the different preparation methods, shape, average crystal
size and structural order–disorder degree in the lattice.
FEG-SEM micrographs of CeO2 obtained at different

soaking times are shown in Fig. 4. According to the image,
most of the grains of CeO2 powders are homogeneous with an
average particle size calculated from the FE-SEM images of
6.7, 7.9, 8.8 and 11.5 nm at a soaking time of 1, 2, 4 and
8 min, respectively. CeO2 powders obtained at lower soaking
times display poor contrast and intense agglomeration amongst
extremely fine particles. Aggregation between the particles
decreases and monodispersed particles are observed at higher
soaking times. The higher agglomeration degree of CeO2

increased at lower soaking times due to Van der Waal's force
derived for the –OH ligand precursor which was transformed
to CeO2 after hydrothermal treatment [60,61]. Moreover, the
distribution in size seemed to be homogeneous and the shape
appeared rounded. The synthesized ceria particles were rela-
tively spherical with uniform size distribution, which was
observed by FEG-SEM. Nanometric and isotropic CeO2

crystallites obtained in this study are quite different from the
previous study, where CeO2 powders agglomerated into a
cubic shape with the side size of 4.8 nm under hydrothermal
conditions [62]. In the hydrothermal process, the presence of
an alkaline medium was found to be essential.
The particle size of the CeO2 powders was also examined using

the TEM (Fig. 5). CeO2 synthesized by MAH under KOH at
100 1C for 1, 2, 4 and 8 min, revealing the particle sizes
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Fig. 3. UV–vis absorbance spectra of CeO2 nanoparticles synthesized at 100 1C by the MAH method under different soaking times: (a) 1 min; (b) 2 min; (c) 4 min
and (d) 8 min.
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approximately range from 6 to 12 nm (Fig. 5a–d). The resultant
particles have a spherical shape with a diameter of approximately
6 nm. However, Fig. 5d presents TEM micrographs of CeO2

synthesized under MAH conditions on KOH mineralizer agent
with a soaking time of 8 min. The particle size was higher (11 nm)
with diameter of 4 nm and were homogeneously distributed
compared to previous condition. The average particle size calcu-
lated from the TEM micrographs is 6.2, 7.4, 8.3 and 11.3 nm at a
soaking time of 1, 2, 4 and 8 min, respectively. The small size of
the CeO2 particles synthesized at a lower soaking time can be
explained quite simply. It is postulated that at the start of the
reaction a large number of nuclei forms in the solution and as the
reaction takes place in a very dilute solution there is not enough
reactant left for the growth of the particles. As a result, the particles
do not grow beyond 7 nm. After annealing at a higher soaking
time, the large agglomerates disappeared and became smaller
isometric ones and the maximum particle size decreased sharply
attaining a value of 7 nm. There was not obvious change in the
morphology under MAH conditions.

Fig. 6 shows the PL spectra of CeO2 powders synthesized by
MAH at 100 1C for 1, 2, 4 and 8 min under ambient condition
according to the decomposition procedure of a band using a
Gaussian response function and a Fourier decomposition/filtering
algorithm. All the observations can be simply summarized.
Whatever the sample be, band at 610 nm became more intense
as particle size was reduced by hydrothermal treatment. As a
consequence these bands may be attributed to bulk energy levels.
This is consistent with their attribution to CT transitions between
O2− and Ce4+ [63]. A role of oxygen vacancies can be discarded as
the samples are not doped. The band at 460 nm was shifted and
became less intense with hydrothermal treatment: the effect was
limited due to the particle size. The main difference between the
samples under hydrothermal ripening was their crystal growth:
very weak for a higher particle size and significant for a lower
particle size. As a consequence this band may be attributed to
surface specific defects that disappear during growth under
hydrothermal conditions. It is noteworthy that these defects
systematically exist in particles obtained by room temperature
precipitation, whatever the pH, pressure and particle size are
predominant. Interestingly, some cerium oxide particles directly
synthesized in hydrothermal conditions did exhibit PL bands at 370
and 414 nm without significant emission at 460 nm [64], confirm-
ing that the intense peak at 460 nm was highly dependent on
preparation processes. PL emission can be changed due to the
presence of a large amount defects associated to the lower soaking
time which affects the particle size. The PL is strongly dependent
on the heat treatment conditions, showing that high soaking times
cause a reduction in the defects or disorder of materials. Intensity of
PL emission increases with the reduction of soaking time, as
indicated in Fig. 6. This intensity is likely associated with structural
disorganization level and the charge transfer occurring between
cerium and oxygen ions. However, it is very important to note that
at this condition no electronic levels of the amorphous [CeO4]
clusters included in the wideband gap of the crystalline cluster were
evidenced. This conclusion is a good indication that the PL of
CeO2 powders obtained by the MAH originates from intrinsic



Fig. 4. FEG-SEM spectra of CeO2 nanoparticles synthesized at 100 1C by the MAH method under different soaking times: (a) 1 min; (b) 2 min; (c) 4 min and
(d) 8 min.

Fig. 5. TEM images of CeO2 nanoparticles synthesized at 100 1C by the MAH method under different soaking times: (a) 1 min; (b) 2 min; (c) 4 min and (d) 8 min.
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Fig. 6. PL spectra at room temperature of CeO2 nanoparticles synthesized at 100 1C by the MAH method under different soaking times: (a) 1 min; (b) 2 min;
(c) 4 min and (d) 8 min.
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defects at lower soaking times and charge transfer after a certain
degree of structural order.

4. Conclusions

Adopting the microwave-hydrothermal process as the synthesis
method it is possible to obtain, by treating the solution at 100 1C
for different soaking times, nanometric and crystalline ceria
nanoparticles. The CeO2 sample has better crystallization in the
treatment at 8 min. FEG-SEM analysis has shown a homoge-
neous size distribution of nanometric CeO2 crystallites. Raman
scattering revealed the first scattering mode which is typical for
cubic fluorite structure. CeO2 synthesized by MAH under lower
soaking times revealed agglomerate particles while CeO2 synthe-
sized under MAH conditions on higher soaking times were well-
dispersed and homogeneously distributed. This can be explained
by the amount of hydrogen bonds during the drying and calcining
processes to form hard agglomerates of particles. UV–vis spectra
revealed the presence of localized energy levels in the band gap
of CeO2 powders with a soaking time of 4 and 8 min possibly
due to the certain structural order degree in the lattice. The PL
emission intensity depends on different types of defects generated
by a possible configuration arrangement interconversion in
solution during CeO2 growth under MAH conditions. The
decrease in the band gap energy is associated to the localized
levels in the band gap and with the charge discontinuities, which
favors the trapping of electrons and holes to photoluminescent
emission. MAH is important not only for the use of a short
treatment time and low temperature but also for the possibility to
control the morphological and structural properties. Therefore, the
MAH method is undeniably a genuine technique for low
temperatures and short times in comparison with the previous
methodologies.
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