
A nonlinear analysis of the transport Barkhausen-like noise measured in
(Bi,Pb)2Sr2Ca2Cu3O

10+δ
 superconductors

I. García-Fornaris, H. Millán, R. F. Jardim, and E. Govea-Alcaide,

Citation: Chaos 23, 023116 (2013); doi: 10.1063/1.4807682
View online: http://dx.doi.org/10.1063/1.4807682
View Table of Contents: http://aip.scitation.org/toc/cha/23/2
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1270473477/x01/AIP-PT/Chaos_ArticleDL_0117/PTBG_Green_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Garc%C3%ADa-Fornaris%2C+I
http://aip.scitation.org/author/Mill%C3%A1n%2C+H
http://aip.scitation.org/author/Jardim%2C+R+F
http://aip.scitation.org/author/Govea-Alcaide%2C+E
/loi/cha
http://dx.doi.org/10.1063/1.4807682
http://aip.scitation.org/toc/cha/23/2
http://aip.scitation.org/publisher/


A nonlinear analysis of the transport Barkhausen-like noise measured in
(Bi,Pb)2Sr2Ca2Cu3O101d superconductors

I. Garc�ıa-Fornaris,1 H. Mill�an,1 R. F. Jardim,2 and E. Govea-Alcaide1,a)

1Departamento de Ciencias B�asicas, Facultad de Ciencias T�ecnicas, Universidad de Granma,
Apdo. 21, P. O. Box 85100 Bayamo, Cuba
2Instituto de F�ısica, Universidade de S~ao Paulo, CP 66318, 05315-970 S~aod Paulo, SP, Brazil

(Received 4 December 2012; accepted 1 May 2013; published online 23 May 2013)

We investigated the transport Barkhausen-like noise (TBN) by using nonlinear time series analysis.

TBN signals were measured in (Bi,Pb)2Sr2Ca2Cu3O10þd ceramic samples subjected to different

uniaxial compacting pressures (UCP). These samples display similar intragranular properties but

different intergranular features. We found positive Lyapunov exponents in all samples, km � 0:062,

indicating the nonlinear dynamics of the experimental TBN signals. It was also observed higher

values of the embedding dimension, m > 9, and the Kaplan-Yorke dimension, DKY > 2:9. Between

samples, the behavior of km and DKY with increasing excitation current is quite different. Such a

behavior is explained in terms of changes in the microstructure associated with the UCP. In

addition, determinism tests indicated that the TBN masked determinist components, as inferred by

j~kj values larger than 0.70 in most of the cases. Evidence on the existence of empirical attractors by

reconstructing the phase spaces has been also found. All obtained results are useful indicators of the

interplay between the uniaxial compacting pressure, differences in the microstructure of the

samples, and the TBN signal dynamics. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4807682]

The most important microstructural units of polycrystal-

line materials are the grains and the grain boundaries. In

general, the physical properties of the grains are

depressed at the grain boundaries, resulting in different

features of the specimen. In high-Tc superconductors, the

transport critical current density decreases between

three to five orders of magnitude with respect to the value

measured within the grains of �108 A/cm2. Thus, several

sintering techniques have developed to improve the trans-

port critical current density across the grain boundaries

in these materials. At the same time, other experimental

techniques intend to study the influences of the synthesis

on the microstructure and therefore on the superconduct-

ing critical current density. One of these techniques is the

Transport Barkhausen-like Noise (TBN), which measures

the voltage across the sample under the simultaneous

influence of a DC excitation current and a low frequency

AC applied magnetic field. In this work, we performed a

nonlinear analysis of the TBN signals measured in high-

Tc polycrystalline superconductors subjected to different

uniaxial compacting pressure before the last heat treat-

ment. The obtained results reveal that the TBN signal has

a clear chaotic nature. Also, it was possible to establish a

relationship between the behavior of some nonlinear

parameters and the microstructure of the studied sam-

ples. The main conclusion of the work is that both the

TBN signal and the nonlinear analysis are useful tools to

study the influence of microstructure on the transport

critical current density of polycrystalline samples of

high-Tc superconductors.

I. INTRODUCTION

The granular nature of polycrystalline high-Tc supercon-

ductors is the most important limitation for the large scale

applications of these materials.1 In ceramic materials, it is

possible to identify two important microstructural units: the

grains and the grain boundaries (GB), also referred to as the

intragranular and the intergranular regions, respectively. In

the intergranular region, the presence of voids, cracks,

impurities, oxygen non-stoichiometry, and the misorientation

between adjacent grains are responsible for a decrease by

three to five orders of magnitude in the transport critical cur-

rent density, Jc. The impact of the above microstructural fac-

tors on the electromagnetic properties of these materials

greatly depends on the sintering conditions. The use of dif-

ferent types of mechanical deformation is one of the most

extended solution to improve Jc mainly due to its marked

increase in the degree of texture of the samples, which tends

to strengthen the connectivity between adjacent grains.2

In previous studies, we have described the influence of

the uniaxial compacting pressure (UCP) on the general

superconducting properties of (Bi,Pb)2Sr2Ca2Cu3O10þd

(Bi-2223) ceramic samples.3,4 The most important feature of

these samples is that they exhibited similar intragranular

properties but different intergranular ones. Moreover, the

experimental results were consistent with the occurrence of

three different superconducting levels in the samples: (i) the

superconducting grains; (ii) the superconducting clusters;

and (iii) the weak-links.4,5 As the properties of the last two

levels are very sensitive to the UCP, these samples constitute

an excellent tool to testing novel techniques sensitive to

processes occurring at the intergranular level.a)Electronic mail: egoveaa@udg.co.cu.
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Within this scenario, a novel technique referred to as

Transport Barkhausen-like noise (TBN) was reported in the

last decade.6 The authors subjected a polycrystalline YBCO

specimen to a low-frequency triangular-wave magnetic field,

BaðtÞ along with a dc electrical current, and measured the

voltage across the sample. Increasing BaðtÞ resulted in the

penetration of the magnetic field within the sample. In such

an experiment, when the maximum applied magnetic field,

Bmax, is less than the first thermodynamic critical field of

grains, magnetic flux only penetrates the weak-links and/or

the superconducting clusters.4 In addition to this, the distri-

bution of the intergranular magnetic field within the sample

is determined by its intergranular features or more appropri-

ately to its microstructure. The combination of the above

physical ingredients resulted in a measurable voltage noise,

stemming from the flux-creep to the flux-flow transition of

Josephson vortex at the intergranular level.7,8 The observed

abrupt jumps in TBN signals were correlated to pinning and

depinning of the Josephson vortices in a background com-

prised of random pinning centers. Such an irregular motion

in turn is responsible for changes in the distribution of the

intergranular applied magnetic field and thus of the electrical

current throughout the sample. The simultaneous supercon-

ducting to normal-state transition of several weak-links

(resistive transition) generates a series of avalanche in the

electrical current rearrangement within the sample, generat-

ing a voltage noise that is measured.9 These signals differ

from the conventional magnetic Barkhausen noise (MBN),

where fluctuations in the voltage signal correspond to sudden

and discontinuous jumps in the magnetization of the mate-

rial.10 In TBN measurements, the discontinuous jumps are

also predicted to occur but in the magnetoresistance data.6

The first TBN study in polycrystalline samples of

(Bi,Pb)2Sr2Ca2Cu3O10þd (Bi-2223) was reported recently.12

However, a systematic study of the effects of the excitation

current on TBN signals measured in Bi-2223 samples sub-

jected to different UCP was performed more recently.11 The

analysis of the experimental data confirmed that the power

spectrum of the TBN follows a 1/f n law with n � 2 and is in-

dependent of the excitation current.6,12 Also, a simple correla-

tion between the excitation current and the time or the applied

magnetic field where the noise first appears (see Fig. 1)

revealed differences in the granular structure of the samples,

previously detected by other traditional techniques.3,4

Based on the nonlinear nature of the electrical-current

characteristic of the grain boundaries, we have proposed a

model for the TBN in high-Tc materials.13 A series-parallel

array of Josephson junctions was considered and details of

the microstructural features of the samples were taken into

account, as changes in the angle of adjacent grains. The

model reproduced qualitatively well the changes in both the

width and the intensity of the TBN. In spite of the above

investigations point out for a possible nonlinear nature of the

TBN signal, a systematic study on this matter is still lacking.

We thus report here a nonlinear analysis of the transport

Barkhausen-like noise measured in Bi1.65Pb0.35Sr2Ca2

Cu3O10þd ceramic samples subjected to different uniaxial

compacting pressures. The TBN signals were studied by

using the TISEAN Software Package.14 This package allows

the nonlinear analysis directly from the scalar time series of

the experimental data without an explicit construction of a

mathematical model. While this computational effort has

been successfully tested in physiological signals and climate

data, to our knowledge, its performance was not explored

within the context of the TBN signals. The aim of this study

is to investigate the well known effect of the uniaxial com-

pacting pressure on the microstructure of the samples but by

extracting and inspecting the behavior of some nonlinear

parameters such as the embedding dimension (m), the

Kaplan-York dimension DKY, and the maximal Lyapunov

exponent (km).

II. EXPERIMENTAL AND NONLINEAR ANALYSIS

Polycrystalline samples of Bi1.65Pb0.35Sr2Ca2Cu3O10þd

(Bi-2223) were prepared from powders of Bi2O3, PbO,

SrCO3, CaCO3, and CuO, which were mixed in an atomic

ratio of Bi:Pb:Sr:Ca:Cu (1.65:0.35:2:2:3). Details of the sam-

ple preparation are described elsewhere.4 Before the last heat

treatment, the powders were uniaxially pressed at different

compacting pressures. The samples referred to as BP2 and

BP4 were uniaxially pressed at 99 and 198 MPa, respectively

(see Table I). The typical dimensions of the pellets were

d¼ 15 mm in diameter and h¼ 1 mm in height. The last heat

treatment was performed in air at 845 �C for 40 h followed

by slow cooling.

We have evaluated the phase identification in both pow-

der and bulk samples by means of X-ray diffraction patterns

obtained in a Bruker-AXS D8 Advance diffractometer.

These measurements were performed at room temperature

using Cu Ka radiation in the 3� � 2h � 80� range with a

0:05� (2h) step size and 5 s counting time. From the X-ray

diffraction data, we evaluate the texture degree along the

(00 l) direction by calculating the Lotgering factor,

FIG. 1. Transport Barkhausen-like noise TBN measured in sample BP4 for

a normalized excitation current density Jex=Jcð0Þ ¼ 0:5, where Jcð0Þ is the

critical current density at zero applied magnetic field. The ac triangular

applied magnetic field, BaðtÞ, used in all measurements is also shown in the

Figure. Dt ¼ ti � tf represents the time width in which the TBN signal

occurs.
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Fð00lÞ ¼ ðP� P0Þ=ð1� P0Þ.3 Here, P0 ¼ I0ð00lÞ=
P

I0ðhklÞ and

P ¼ Ið00lÞ=
P

IðhklÞ. Here, I0ð00lÞ and I0ðhklÞ are the intensities

of (00 l) and ðhklÞ peaks for a powder sample, respectively.

On the other hand, Ið00lÞ and IðhklÞ are the intensities of (00 l)
and ðhklÞ peaks, respectively, for the pellet sample.

Magnetization measurements under low applied mag-

netic fields were performed by using of a commercial

Quantum Design SQUID magnetometer. In these experi-

ments, the powder of a given sample was cooled in zero

applied magnetic field from room temperature down to 77 K.

After this, the applied magnetic field Ba was then increased

from 0 to 50 mT, in steps of 0.5 mT and the magnetization

was measured for each value of Ba.

Three types of transport measurements were performed

by using the standard dc four-probe technique: (i) the temper-

ature dependence of the electrical resistivity, q(T), (ii) the

current-voltage (I– V) characteristic curves, and (iii) the trans-

port Barkhausen-like noise (TBN). In these measurements,

copper electrical leads were attached to Au film contact pads

of �1400 Å in thickness, evaporated on parallelepiped-

shaped samples using Ag epoxy. The typical dimensions of

the samples were t¼ 0.5 mm (thickness), w¼ 2 mm (width),

and l¼ 10 mm (length).

The temperature dependence of the electrical resistivity,

q(T) was measured in the temperature range 70 K � T
� 300 K. Before each measurement, the samples were

cooled from room temperature down to 70 K. Then, an exci-

tation current, I¼ 1 mA, was injected along the major length

of the samples. The voltage across the sample and the tem-

perature were both collected, while the temperature was

raised slowly to 300 K.

Current-voltage I–V measurements were performed after

cooling the sample in zero applied magnetic field to

T ¼ 77 K. Once the temperature was stabilized, the excita-

tion current through the sample was applied and increased

automatically in steps of 1 mA, while the voltage across the

sample was measured. We extracted the value of the trans-

port critical current at zero applied magnetic field, Ic(0),

from the measured I–V curve by taking the Ic value in which

the voltage across the sample reaches 1 lV/cm.

The transport Barkhausen-like noise (TBN) was

performed by using the standard dc four-probe technique.

Details of the experimental setup are reported in the Ref. 11.

In these experiments, the sample is always cooled from room

temperature down to 77 K in zero applied magnetic field.

After the cooling, a dc excitation current was applied to the

sample along the plane perpendicular to the compacting

direction. In order to assure that the signal only involves con-

tributions arising from the magnetic field in the intergranular

region, we have applied magnetic fields lower than the first

thermodynamic critical field of the grains, Hc1g, which, in

Bi-2223 samples, is believed to be � 8 mT at 77 K, as deter-

mined from the experimental M(Ba) curves.4

III. THE NONLINEAR ANALYSIS

The nonlinear time series analysis was performed fol-

lowing the steps: (i) nonlinear noise reduction; (ii) minimal

embedding delay determination after averaged mutual infor-

mation estimation; (iii) embedding dimension determination

after fraction of false nearest neighbors calculation; (iv)

maximal Lyapunov exponent estimation; (v) phase space

reconstruction; (vi) determinism tests; and (vii) determina-

tion of the Kaplan-Yorke dimension. Details of the proce-

dure used in these steps are given below.

A. Nonlinear noise reduction

It is important to point out that each measurement

process is inevitably sensitive to random or deterministic

fluctuations. These undesired contributions can be mini-

mized by using a locally projective nonlinear noise reduction

filter. Here, we have used the filter developed in Ref. 15 The

method is based on the hypothesis that a natural time series

is a combination of both a low-dimensional dynamical sys-

tem and a high-dimensional (random) noise. Unlike linear

filters, the nonlinear ones are capable in removing only those

noisy data points. The noise points are then replaced by esti-

mates computed from a nonlinear interpolation process.16,17

For this assignment, we have used the ghkss.exe program in

the TISEAN Software Package.

B. Embedding delay determination

The mutual information (MI) method was used for esti-

mating an appropriate embedding delay value, s.18 The auto-

correlation function for defining a convenient s value has

been used frequently. However, while the autocorrelation

function describes only linear correlations, the mutual infor-

mation also takes into account the nonlinear structures. That

is, the mutual information between the TBN signals xi and

xðiþsÞ quantifies the information at a given state xðiþsÞ under

the assumption that the information at the state xi is known.

The theoretical rationale of this method has been discussed

elsewhere.18,19 Here, we just describe its fundamental basis.

Given a time series of TBN signals x0, x1; x2;…; xi;…; xk

with minimum (xmin) and maximum (xmax) values, one is able

to calculate the absolute difference jxmax � xminj. This differ-

ence is partitioned into g equally sized intervals. Assuming j
as large as a possible integer number, we would have

MI ¼ �
Xj

h¼1

Xj

c¼1

Ph;cðsÞ ln
Ph;cðsÞ
PhPc

; (1)

where Ph and Pc are the probabilities that the variable takes a

value within the hth and cth levels, respectively, and Ph;cðsÞ

TABLE I. Some parameters of the samples studied in this work: the com-

pacting pressure, P, the Lontgering factor along (00 l) direction, Fð00lÞ, the

onset superconducting critical temperature, Ton, the offset superconducting

critical temperature, Toff, the effective intergranular pinning energy, U0, and

the transport critical current density at zero applied magnetic field, Jc(0),

and 77 K. The parameters were extracted from Ref. 3.

P Ton Toff U0(1 mT) Jc(0)

Sample (MPa) Fð00lÞ (K) (K) (eV) (A/cm2)

BP2 99 0.54 119.5 98 2.1 142

BP4 198 0.70 120.2 105 7.5 461
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is the joint probability in which xi is in the h level and xiþs is

in the c level. The case Ph;cðsÞ ¼ PhPc implies no correlation

between xi and xiþsðMIðsÞ ! 0Þ. Generally, the first mini-

mum of MI(s) versus s is accepted as a suitable value for the

time lag (s). This allows us to derive the attractor reconstruc-

tion from the real time series. Also, it has been pointed out

that the first minimum criterion only applies to a well

marked minimum.18 In the present work, this method was

implemented by using the routine mutual.exe of the TISEAN

Software Package. We allowed the search for the first mini-

mum of MI(s) versus s by setting smax ¼ 500 and g¼ 12 as

starting parameters.

C. Embedding dimension

Kennel et al. suggested the fraction of false nearest

neighbors (FFN) method for computing the minimal embed-

ding dimension m.14,19 This method allows one to recon-

struct the phase space and unmask the deterministic structure

of the system. Briefly, one constructs a vector sequence

~pðiÞ ¼ xi; xiþs; xiþ2s;…; xiþðm�1Þs (s is the embedding delay)

from each point in the m-dimensional embedding space. The

next step is find a neighbor ~pðjÞ, provided that

jpðiÞ � pðjÞj < e, where e is a small constant usually of the

order of the standard deviation of the time series. Then, a

normalized distance Ci between the (mþ1)th embedding

coordinate of points p(i) and p(j) could be computed

CðiÞ ¼ jxiþms � xjþmsj
jpðiÞ � pðjÞj : (2)

When the distance of the iteration to the nearest neigh-

bor ratio exceeds a defined threshold (e), the point is consid-

ered as a false neighbor. The outcome is a fraction (e.g.,

percentage) of false neighbors for each embedding dimen-

sion. For a correct application of this method, it is necessary

to provide s and e values previously estimated. In addition to

this, it is also required to introduce a range of m values, pro-

vided that FNN! 0 with a significant number of points

entering the statistics for the selected m range. In the present

work, we set mmin¼ 1 to mmax¼ 15 as input parameters. The

routine false_nearest.exe of the TISEAN Software Package

was used as a computational tool.

D. Maximal Lyapunov exponent

The maximal Lyapunov exponent is the most common

indicator of chaotic behavior of a system. This parameter

characterizes the separation rate of trajectories within the

phase space.20 We have used the method developed in Ref.

21. In such a method, one considers the time series as a

sequence x0; x1, x2, …, xi, …, xk, where xi represents the ob-

servation at time i¼ 0, 1, 2, …, N. The data are treated as a

trajectory and it is introduced the Euclidean distance

Y ¼ jxn�xn0 j, representing a small perturbation. The evolu-

tion of Y is then estimated from the time series as

Sðe;m;DtÞ ¼ log
X
jxnþt � xn0þtj ¼ bþ kmDt; (3)

where e is the spacing within a two dimensional level

constructed for defining nearest neighbors, Dt is the time

interval, km is the maximum Lyapunov exponent, and b is

the intercept of the regression line. The slope of regressing

Sðe;m;DtÞ on Dt is the estimate of the maximal Lyapunov

exponent (km). The Sðe;m;DtÞ versus Dt linear relationship

needs to be confirmed for a range of grid spacing, e. Here,

we have selected five different e values according to the ratio

emax=emin ¼ 10. A complete description of the method is

found in Ref. 21. Based on km values, three cases are distin-

guished from physical systems:

(a) km < 0, representing a dissipative dynamical system

with asymptotic stability;

(b) km ¼ 0, characterizing conservative dynamical sys-

tems. This is expected to be a very rare case for open,

real systems like soils;

(c) km > 0, related to the exponent of unstable and chaotic

systems. This situation is not incompatible with the ex-

istence of some type of organization and/or pattern

emergence (e.g., fractal or multifractal structures).

The program lyap_k.exe of the TISEAN project was

selected for numerical computations.

E. Phase space reconstruction

The Takens theorem, delay method,22 has been exten-

sively used for the phase space reconstruction.23,24 This theo-

rem is applicable to infinitely long time series. The method

may be used for embedding a univariate empirical time se-

ries xi (i¼ 1, 2, …, N) into an m-dimensional space23

Xm
i ¼ ðxi; xiþs;…; xiþðm�1ÞsÞ: (4)

This method reconstructs the orbit

Xm
i ¼ ½x1; x2;…; xp�s p ¼ N � ðm� 1Þ; (5)

where m is the embedding dimension and s is the embedding

delay. The routine delay.exe of the TISEAN package is appro-

priate for generating the time delay coordinates and to recon-

struct the phase space.

F. Determinism tests

To investigate if the apparently randomness of the TBN

signal has a hidden deterministic component, we perform a

numerical test developed by Kaplan and Glass.25 The

embedding space is partitioned into L identical boxes. This

method associates a unit vector field (ê) to the bundle of

trajectories and searches for the directional variation of the

vector field in its path through the L-th box. The directional

behavior of the vector field determines three situations on

the average length of the unit vectors associated to each tra-

jectory (let us call ~k):

(a) ~k � 1, where the vectors crossing the L-th box are par-

allel to each other. In this case the system might be

defined as highly deterministic.

(b) ~k � 0, where all the vectors crossing the L-th box are

randomly oriented each other. In this case, the trajecto-

ries intercept each other at any angle, reducing the
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average vector length. This occurs for stochastic (ran-

dom) systems.

(c) 0 � ~k � 1, where the system masks both determinist

and stochastic components. The predominant compo-

nent here is determined by the ~k value.

In this case, the program determinism.exe was used for

numerical computations26 and applied to both filtered and

non-filtered TBN signals. One of the final results constitutes

the average j~kj value. In our calculations, the number of

boxes is L¼ 30.

G. The Kaplan-Yorke dimension

The Kaplan-Yorke dimension (DKY) is an interesting

nonlinear parameter as it is usually related to the complex

structure of the attractor, confining the dynamics of the sys-

tem. It was originally stated as a conjecture,27 but it has

proved to be true. Many authors consider DKY as a measure

of complexity, strangeness, and fractal dimension of the

attractor.14,28 In addition, DKY also has been identified as the

dimension of the system.29 The practical computation of DKY

requires the spectrum of Lyapunov exponents. By consider-

ing a chaotic system with m degree of freedom (m embed-

ding dimensions or delay coordinates), the Lyapunov

exponents spectrum is expected to have as many exponents

as degree of freedom. Let us consider a N-dimensional sys-

tem such that its spectrum of Lyapunov exponents contains n
exponents. If

P
is the sum from k1 to kn, such that n � N,

then there exists a maximum integer number n¼x such thatP
is still positive and another integer x þ 1 such that

P
is

negative. It is then hypothesized that the fractal dimension of

the studied system locates between x and x þ 1. The mathe-

matical expression for such a computation is

DKY ¼ nþ

Xn

i¼1

ki

jknþ1j
; (6)

where n is the maximum integer such that the sum of the n
largest Lyapunov exponents is still positive.

It is instructive to illustrate here the application of

Eq. (6) for the case of the well known Lorenz system. The

Lyapunov exponent spectrum for such a system is composed

by k1 ¼ 0:90564; k2 ¼ 0:0, and k3 ¼ �14:57231 (an

extremely large negative exponent). The application of Eq.

(6) yields k1 þ k2ðn ¼ 2Þ ¼ 0:90564 and jknþ1j ¼ 14:57231.

Thus, DKY¼ 2 þ (0.90564/14.57231)¼ 2.06214, suggesting

that the negative Lyapunov exponent adds a strong determin-

istic component to the system dynamics. In fact, the deter-

minism test as applied to the Lorenz system renders

j~kj ¼ 0:998.

From nonlinear time series analysis, one may define the

Lyapunov time, K, as

K ¼ T

km
; (7)

where T is the experimental sampling interval. The K param-

eter represents the maximal time period for making reliable

predictions. Equation (7) has been used previously within a

climatic perspective.30

IV. RESULTS AND DISCUSSION

Some preliminary features of the studied samples are of

interest and can be find elsewhere.3,11,31 We first mention

that X-ray diffraction patterns revealed that all samples have

similar chemical composition and their indexed reflections

are related to the high-Tc Bi-2223 phase.3 Values of the

Lotgering factor reported in Table I were found to increase

�30% between sample BP2 ðFð00lÞ ¼ 0:54Þ and sample BP5

ðFð00lÞ ¼ 0:70Þ. This result indicates that both samples have

different degree of texture and that grains of the sample BP4

are more aligned than those of sample BP2. Such a feature

has its counterpart in the intergranular transport properties of

the samples. From curves of the temperature dependence of

the electrical resistivity, qðTÞ, we have found that the super-

conducting transition temperature of isolated grains Ton is

essentially the same for both samples but Toff, the tempera-

ture in which the zero-resistance state is observed, increases

from 98 (sample BP2) to 105 K (sample BP4), as displayed

in Table I. This corroborates the assumption that both sam-

ples have similar intergranular properties but quite different

intergranular ones.

We also mention that increasing the uniaxial compacting

pressure improves the texture degree which and the connec-

tivity between grains. As a consequence, the transport criti-

cal current density, which strongly depends of the features at

the intergranular level, increases�3 times (see Table I).

Similar improvement has been also observed in the behavior

of the intergranular pinning energy. In this case, increasing

compacting pressure results in the dynamics of the

Josephson vortices, mostly those located at the grain bounda-

ries. In summary, the intergranular features of samples BP2

and BP4 are different and may be used for testing the trans-

port Barkhausen-like noise technique as a tool for a better

understanding of superconducting ceramic samples, as dis-

cussed elsewhere.6

Measurements of the transport Barkhausen-like noise

were then performed in order to gain further information

regarding the intergranular properties of the samples. Figure

1 displays the time dependence of the TBN signal, in which

the measured voltage across the sample is transformed into

electrical resistance (sample BP4) for a given fraction of the

normalized excitation current density, Jex=Jcð0Þ ¼ 0:5. Here,

Jex is the excitation current applied to the sample. We have

also included in the figure the ac waveform of the applied

magnetic field, BaðtÞ. The maximum value of BaðtÞ used in

all measurements was 5.5 mT. The noise appears in a time

interval Dt ¼ tf � ti, where ti is the time in which the noise

signal first appears and tf is the time where it vanishes. The

occurrence of the TBN signal has been detected in a narrow

region of BaðtÞ or more appropriately between the corre-

sponding magnetic fields BaðtiÞ and Baðtf Þ, as inferred from

the Figure 1. The TBN signals measured in samples BP2 and

BP4, subjected to different values of the normalized excita-

tion current density, Jex=Jcð0Þ, revealed an appreciable

decrease of ti with increasing excitation current.11 We also
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mention that such a behavior is much more pronounced in

sample BP2. Similar behavior has been observed in both tf
and Baðtf Þ. Also, the intensity of the TBN signal is much

higher in sample BP2. As pointed out above, there is a defi-

nite microstructural difference between the uniaxially

pressed samples. As the detected TBN signal stems from pin-

ning and depinning processes at the intergranular medium,

the general physical behavior of the samples may be related

to the differences in their intergranular features.

We turn now to the nonlinear analysis of the TBN

signals for different values of the ratio Jext=Jcð0Þ (see Fig. 4

of Ref. 11). We emphasize that our samples have three

different initial parameters: (i) the ratio Jext=Jcð0Þ; (ii) the ac
triangular applied magnetic field, BaðtÞ; and (iii) the micro-

structure which is uniaxial compacting pressure dependent.

The relevant results for the analysis are displayed in Table II

and may be summarized as follows: (i) all values of the max-

imal Lyapunov exponent are positive, strongly suggesting

the existence of chaotic behavior in the TBN signals; (ii) the

occurrence of high values of the embedding dimension, m,

and the Kaplan-Yorke dimension, DKY; (iii) a reduction of

the embedding dimension between samples BP2 and BP4.

As m is related to the active number of degrees of freedom,

its high values indicate that many variables have an effect on

the nonlinear evolution of the TBN signal. We also notice

that in the sample BP4 and for any Jext=Jcð0Þ ratio, values of

m are smaller than those obtained for the sample BP2.

According to the meaning of the maximal Lyapunov expo-

nent, the results displayed in Table II indicate that sample

BP2 is much less sensitive to changes in the initial condi-

tions (Jext=Jcð0Þ) than BP4. Consequently, as the ratio

Jext=Jcð0Þ increases, the dynamics of the TBN signal meas-

ured in the sample BP2 remains essentially unaltered while

it varies appreciably in sample BP4. It is important to notice

that, given the three initial conditions, two of them,

Jext=Jcð0Þ and BaðtÞ are similar in both samples. On the other

hand, their microstructures are quite different by the virtue

of the unixial compacting pressure. Thus, it is reasonable to

connect the changes observed in the nonlinear parameters

displayed in Table II to the microstructural differences

between samples.

Let us then consider that the polycrystalline samples

studied here are comprised of three superconducting levels:

the superconducting grains, the superconducting clusters, and

the weak-links.3,4 Within this scenario, the magnetic flux first

penetrates the sample via the weak-links, a phenomenon

believed to occur at very low applied magnetic B	 BaðtÞ
fields. With increasing BaðtÞ, the magnetic flux starts to pene-

trate the superconducting clusters. A further increase in Ba,

being higher than the first thermodynamic critical field,

would result in a penetration of the magnetic flux within the

superconducting grains. The sample BP2 is believed to be

comprised of superconducting grains which are weak coupled

to each other. In other words, its pinning energy is quite low

(see Table I) so intergranular vortices can move almost freely

throughout the intergranular medium of the material. On the

other hand, sample BP4, subjected to a much higher com-

pacting pressure, is comprised of a microstructure of strong-

coupled and well-connected superconducting grains, or more

appropriately speaking, a microstructure composed mostly of

superconducting clusters.

We now turn to the connection of the parameters

extracted from the nonlinear analysis with the microstructure

of the samples. Due to the difference in their microstructures,

it is reasonable to assume that small changes in the nonlinear

parameters, extracted from sample BP2, are related to two

features: (i) its very low pining energy; and (ii) the very high

population of high-angle Josephson junctions between adja-

cent grains, that act as weak-links. On the other hand, the

high sensibility of km to the increasing of the ratio Jext=Jcð0Þ
in sample BP4 is certainly due to the very high population of

low-angle Josephson junctions, making the TBN signals

being dominate by the superconducting clusters, as reported

elsewhere.11 These results also suggest, to some extent, that

the uniaxial compacting pressure has its counterpart in the

nature of the TBN signals and dynamics.

Some previous investigations on chaotic dynamics have

suggested that noise is not responsible for inducing chaos,32

while others have reported the occurrence of deterministic

chaos in systems with km > 0.33,34 In the latter, chaos has

been found within an experimental resonance circuit with

nonlinear capacitors. The authors explained such a chaotic

behavior in terms of an underlying collective cooperation of

multiple domains where all degrees of freedom inside the

ferroelectric capacitor cooperate. Following the above-

mentioned statement, we consider that the chaotic behavior

detected in the TBN signals may not be caused by a noisy

signal component. In our view, the chaotic behavior deserves

a more detailed description. We first recall that increasing

the ratio Jext=Jcð0Þ implies in a superconductor to normal

transition, a feature close connected to the population of

grain boundaries with high angles.35 That is, when a current

channel, or pathway, through a weak-link is suppressed, the

current density in the neighboring area is expected to

increase and will continue to disrupt others weak-links. This

results in a redistribution of the transport current throughout

the sample, causing a nonlinear behavior due to the random

movement of the vortices, expected to be pinned and

depinned at the grains boundaries.

Values of DKY are commonly associated with the attrac-

tor dimension or the information entropy of the system,28 as

well as the high dimensional structure of the system. In the

latter case, higher values of DKY are related to the existence

of extreme Lyapunov exponents. This indicates a highly cha-

otic degree of freedom coming along with a dissipative

TABLE II. Nonlinear parameters of the TBN signals measured in the stud-

ied samples for different values of Jext=Jcð0Þ: embedding dimension m, max-

imal Lyapunov exponent km, and the Kaplan-Yorke dimension DKY.

BP2 BP4

Jext=Jc(0) m km DKY m km DKY

0.4 13 0.105 4.356 9 0.108 2.974

0.5 15 0.118 4.702 10 0.062 3.283

0.6 13 0.126 4.746 10 0.171 4.091

0.7 15 0.123 4.778 13 0.158 5.019

0.8 15 0.103 4.579 11 0.183 5.071
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degree of freedom. This higher dimensionality may be

detected from the embedding dimension m values. The DKY

values in the sample BP2 remains almost unaltered as the

ratio Jext=Jcð0Þ increases. In contrast, in sample BP4, DKY

values follow a linear trend. This constitutes an interesting

result and may be related to the microstructural differences

between samples. Notice that in sample BP2, the microstruc-

ture can be seen as more isotropic due to the high concentra-

tion of high angles between adjacent grains.3,11,13 We want

to remark that the occurrence of noise is due to pinning and

depinning of Josephson vortices. Most of the junctions in

this sample behave as weak-links, the orientational degree is

low, and the pinning energy of the vortices is also very low

(see the Table I). The combination of the above factors

strongly indicates that this sample is almost insensitive to

changes in the excitation current, or more appropriately to

the ratio Jext=Jcð0Þ. Let us again suppose that grain bounda-

ries or junctions are the source of information in this set of

samples. If an individual grain boundary or junction is in the

superconducting state, we define its informational state as 0:

in the normal-state it is 1. The results strongly suggest that

the microstructure of the sample BP2 is comprised of junc-

tions with state 1 at the same time for a given excitation

current, even for low values of Jext=Jcð0Þ. Similar considera-

tions were taken into account in the Ref. 35. The above anal-

ysis implies that the number of informational sources may

not vary with increasing the excitation current. In the sample

BP4, the analysis is somewhat different. This sample, pellet-

ized in a higher uniaxial compacting pressure, is comprised

of weak-links and some superconducting cluster, i.e., grains

more strongly connected.3,4,11 In this sample as the excita-

tion current increases the number of informational sources

also increase. For low excitation current, the weak-links

have state 1 but cluster remains in 0. As the ratio Jext=Jcð0Þ
increases some clusters change its state to 1, in consequence

DKY also increases. Within the framework of the above anal-

ysis, the conclusion stated that increasing the ratio Jext=Jcð0Þ
contributes to the chaotic behavior of the samples. This is

also supported by previous computational investigations in

Josephson junctions systems.36

Returning to the data displayed in Table II, one also

observes that sample BP4 has larger km values. Furthermore,

we found a significant linear relationship between DKY val-

ues and Jext=Jcð0Þ (the correlation coefficient is R¼ 0.972).

This indicates that dynamics of the TBN signal increases its

complexity as a function of Jext=Jcð0Þ. Thus, the fractal

dimension of the attractor also increases. This experimental

finding supports, to some extent, our hypothesis on the rela-

tionship between the fractal dimensionality of the attractor

and the pinning energy. However, as compared with BP2,

the dynamics of the TBN signal in the sample BP4 seems to

be influenced by a higher negative Lyapunov exponent for

Jext=Jcð0Þ ¼ 0:4, 0.5, and 0.6. Notice, that for these values of

the excitation current DKY (BP4) < DKY (BP2). It seems that

for high Jext=Jcð0Þ values more stable oscillation modes

dominate the TBN dynamics of the sample BP4. On

the other hand, it is important to point out that the condition

m > 2DKY has been fulfilled in all calculations, as usually

considered within the context of nonlinear dynamics.37

The determinism test also rendered valuable results for a

more detailed discussion.25 For all considered cases, this pa-

rameter indicate the existence of a hidden determinist com-

ponent driving the TBN dynamics. This expected result has

been confirmed after conducting the same determinism test

on the unfiltered TBN signals (see Table III). That is, all the

apparently noisy signals mask a strong deterministic compo-

nent ranging from j~kj ¼ 74% to j~kj ¼ 90% for the filtered

signal and from j~kj ¼ 51% to j~kj ¼ 71% for the filtered and

unfiltered signals, respectively. Thus, the chaotic dynamics

is deterministic to some extent. These results could contra-

dict, in principle, traditional findings derived from linear

spectral analysis, which are used for detecting Gaussian

noise. That is, the Fourier analysis represents a collection of

linear methods which are insensitive to nonlinear response of

the system. The determinist chaos suggests an underlying

nonlinear deterministic structure that, in spite of the presence

of noise, allows one to infer how much the deterministic

structure is still visible and how much of this underlying

structure is stochastic. These findings also suggest the exis-

tence of some sort of predictability range, as represented by

the Lyapunov time K. Within the range of variables

described above, deterministic models (e.g., local or global

polynomial models) may be appropriate for describing the

TBN signals. We also mention that, in Ref. 33, the authors

have derived an ordinary differential equations ODE system

for describing the nonlinear dynamics of a ferroelectric ca-

pacitor from experimental data analysis only.

Figure 2 shows the 2-dimensional phase space portrait

projection, also referred as attractors, for the filtered TBN

time series from the studied samples at Jext=Jcð0Þ ¼ 0:4.

Some components of the waveform were not successfully

resolved but the presence of closed orbits is still visible. The

dynamics is more dense for smaller oscillations (i.e., near the

center of the orbit) where noise persists. Each inset repre-

sents the 2-D projection of this noise embedded in the

m-dimensional space. The random distribution of points

within a smaller spatial region is observed. This smaller area

is concentrated around the state space center. These random

points fill the space without any coherence or a clear struc-

ture. However, Fig. 2(b) displays a much better waveform

resolution for the sample BP4 when compared with that cor-

responding to sample BP2. A careful inspection of the attrac-

tor of the Fig. 2 strengthens the idea that the TBN signal is

not only a noisy signal, in the sense that the respective

behaviors of these signals are completely different from a

TABLE III. Results of the determinist test, j~k j, for the filtered and unfiltered

TBN signals measured in the studied samples for different values of the ratio

Jext=Jcð0Þ.

Filtered Unfiltered

Jext=Jcð0Þ BP2 BP4 BP2 BP4

0.4 0.81 0.85 0.67 0.64

0.5 0.79 0.65 0.66 0.60

0.6 0.80 0.74 0.57 0.69

0.7 0.75 0.90 0.51 0.71

0.8 0.79 0.77 0.69 0.68
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colored noise. Moreover, the data displayed in Fig. 2 reveal

the effect of the compacting pressure on the TBN behavior.

Such an effect is mainly reflected on the magnitude of the

noisy component of the TBN signal. This is shown in the

insets of the figure, where a clear noise reduction is observed

as the compacting pressure increases. Such a result, com-

bined with determinism tests, is believed to be an useful indi-

cator of the interplay between the uniaxial compacting

pressure, differences in the microstructure of the samples,

and the TBN dynamics. Studies are underway to clarify the

potential advantages of the nonlinear analysis of TBN sig-

nals compared to others in the literature.38

V. CONCLUSIONS

We have considered nonlinear time series analysis

for interpreting the transport Barkhausen-like noise in uniax-

ially pressed (Bi,Pb)2Sr2Ca2Cu3O10þd ceramic samples. The

obtained results indicate that all values of the maximal

Lyapunov exponent are positive, the occurrence of high val-

ues of the embedding dimension, and the Kaplan-Yorke

dimension. The combined results are sufficient to support the

conclusion that the TBN signals measured in both samples

present a chaotic nature. The observed behavior of the non-

linear parameters between samples BP2 and BP4 is of inter-

est. We first mention the mean value of the embedding

dimension that decreases from �14 to �10. The analysis

also indicates a close relation between the microstructure of

the samples and the chaotic nature of the TBN. In this sense,

the results suggest that the noise measured in the sample

BP2 is more insensitive to changes in the applied magnetic

field and the excitation current. This has been related to the

very low pinning energy at the intergranular medium, which

is large comprised of weak-links. The excitation current

affected significantly neither km nor DKY for BP2 sample (it

was not found a significant statistical relationship between

DKY and Jext=Jcð0Þ) which provides no information on BP2

sample microstructure. On the other hand, DKY value

increased following a linear relationship as a function of

Jext=Jcð0Þ for BP4 sample. Finally, our findings suggest that

DKY might better discriminator of the TBN dynamics than km

due to the underlaying influence of negative Lyapunov expo-

nent on DKY computations. This was more evident for BP4

sample.
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