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a b s t r a c t

In the recycling of polymer e-waste, there is a pressing need for rapid measurement technologies for the
simple identification and classification of these materials. The goal of this work was to instantly identify
e-waste polymers by laser-induced breakdown spectrometry (LIBS). The studied polymers were
acrylonitrile-butadiene-styrene (ABS), polystyrene (PS), polyethylene (PE), polycarbonate (PC), poly-
propylene (PP), and polyamide (PA). Emission lines were selected for C (247), H (656), N
(742 þ 744 þ 747), and O (777), as well as the molecular band of C2 (516), and the ratios of the emission
lines and molecular band were utilized. Classification models, k-nearest neighbors (KNN) and soft in-
dependent modeling of class analogy (SIMCA), were used to rank the polymers. Both constructed models
gave satisfactory results for the validation samples, with average accuracies of 98% for KNN and 92% for
SIMCA. These results prove the predictive analytical capabilities of the LIBS technique for plastic iden-
tification and classification.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Electronic segments are considered as the world's largest and
fastest growing industry [1]. Associated with this rapid growth in
electrical and electronic applications, a relatively new type of waste
stream, termedwaste electronic and electrical equipment (WEEE or
e-waste), has become a major area of concern worldwide [2].
During the last three decades, the amount of e-waste generated has
increased dramatically, and this trend is currently projected to keep
increasing for the next several years [3,4].

A recent report by United Nations University estimated that
approximately 42 million metric tons (Mt) of e-waste was gener-
ated in 2014 and that 50 million Mt will be generated in 2018 [4].
Electronic waste is a type of solid waste with the fastest growth in
the world, mainly due to the rapid obsolescence of equipment (2e3
years or less). Its composition is complex, and the amount of
polymer e-waste is estimated to be between 10 and 30% by weight
(average 21%) and varies according to the type of device [5,6].
.

Polymers that constitute e-waste are diverse, and at least 15
different types exist. Among the most commonly used are
acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), high-
impact polystyrene (HIPS), polypropylene (PP) and polyethylene
(PE) [7e9].

Considering the large amount and complexity of polymers that
can be generated from e-waste, adequatemanagement is necessary
for the correct disposal or recovery of these materials. In this sense,
the process of recycling is presented as an attractive alternative [6].
The goal of recycling is to return polymeric waste to the productive
chain, reducing the amount of improperly disposed of post-
consumer solid material. Therefore, recycling is a solution to this
problem, and the first step is the identification and classification of
the polymer composition in a given e-waste.

Several techniques are used to identify polymers. Among the
most often employed are mass spectrometry (MS) [10,11], infrared
spectrometry (IR) [12] thermal analysis [13,14], inductively coupled
plasma-mass spectrometry (ICP-MS) [15] and inductively coupled
plasma optical emission spectrometry (ICP OES) [16]. Among these
mentioned techniques, IR is one of the most frequently used in the
identification of polymers [12]; however, it is not suitable for the
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analysis of black plastic samples [17]. Thermal analysis is commonly
used but is destructive [12] and presents a low analytical frequency.
Other techniques such as ICP-MS and ICP OES normally require
time-consuming or extensive sample preparation routines and are
destructive in order to turn the solid sample into a homogeneous
aqueous solution [18]. In this regard, laser-induced breakdown
spectroscopy (LIBS) is an analytical technique that presents great
potential for this application (high analytical frequency, portability,
no or minimal sample preparation, and the possibility of hyphen-
ation) [19e22].

Laser-induced breakdown spectroscopy is primarily an
elemental analysis technique that is applied in several fields
[23e25], such as qualitative and quantitative samples analysis.
However, molecular materials are almost entirely atomized when
exposed to the intense laser radiation that is sufficient for break-
down. This implies that limitations exist in the application of LIBS
to the identification of compounds because of the loss of molecular
information in the plasma, especially for organic compounds that
only contain mostly carbon and hydrogen, as well as oxygen and
nitrogen [17,26]. These limitations can be addressed using statis-
tical chemometric tools. Many research groups are working to
identify polymeric materials using LIBS, particularly through the
use of different chemometric tools [17].

Several studies in the scientific literature conducted to identify
plastics employed different strategies combining LIBS and chemo-
metric tools. Determining the ratios of different emission lines and
molecular bands [27,28] is a strategy found in the literature.
Methods of normalized coordinates (MNC) and linear and rank
correlation were applied to identify polymers with very similar
chemical compositions [29]. A complete analysis of several poly-
mers was made using principal component analysis (PCA) [30,31].
A chemometric method based on discriminant function analysis
(DFA) was used to discriminate polymers with slight differences
between their spectra [32]. Other chemometric tools such as soft
independent modeling of class analogy (SIMCA), k-nearest
neighbor (KNN) and partial least squares for discriminant analysis
(PLS-DA) have been widely used in the identification and classifi-
cation of polymers [33]. Artificial neural networks (ANNs) com-
bined with LIBS have been used with success to identify polymers
[34].

In this context, this study presents an alternative method for the
identification and classification of six polymer types most
commonly found in e-waste. The studied polymers were
acrylonitrile-butadiene-styrene (ABS), polystyrene (PS), poly-
ethylene (PE), polycarbonate (PC), polypropylene (PP) and poly-
amide (PA). Initially, PCA was applied in an exploratory analysis,
and SIMCA and KNN were later applied for the proposition of
classification models based on the LIBS spectra. These classification
models can be used for the recycling of e-waste polymers,
contributing to the management of these wastes by different in-
dustrial segments.

2. Experimental

2.1. Instrumentation

2.1.1. Laser-induced breakdown spectroscopy (LIBS)
LIBS spectra were obtained on a J200 LIBS system (Applied

Spectra, Fremont, CA, USA) using the control software Axiom 2.5
(Applied Spectra). This system consisted of a nanosecond Nd:YAG
laser (Quantel Ultra, Bozeman, MT, USA) that provided up to 100mJ
of energy, a 6-channel CCD spectrometer with a fixed gate width of
1.05 m in a spectral window from 186 to 1042 nm and an xeyez
translational ablation chamber with a 1280-1024 CMOS color
camera imaging system. The emission lines of the elements of
interest and the internal standards were identified using Aurora
software (Applied Spectra).

2.1.2. Differential scanning calorimetry (DSC)
Differential scanning calorimetry measurements were carried

out on a DSC Netzsch Maia F3 200 instrument under a nitrogen
purge. Scanning analysis was carried out from 20 �C to 200 �C, with
heating and cooling rates of 20 �C.min�1. The glass transition
temperature (Tg) was determined during the second heating by the
inflection method.

2.2. Samples

A total of 477 recyclable polymers derived from e-waste pos-
sessing different characteristics (colors, sizes and precedence) were
used. These polymers contained several additives that were min-
eral, metallic, or organic. The organic additives involved the pres-
ence of oxygen, nitrogen, or carbon that did not originate from the
polymer chain. These elements can jeopardize the classification of
polymers. For this study, six types of polymers were used that
represent the most commonly found polymers in e-waste. The
studied polymers were divided into the following classes: (1) ABS
and PS, (2) PE, (3) PC, (4) PP, and (5) PA. For the calibration set, 277
samples were used, and 200 samples were used for the validation
set. For additional evaluation of models 15 samples of polymers
were supplied by a polymer e-waste recycling company. These
samples were identified through the company's routine method,
which consisted of burning the polymers followed by identification
by the human senses.

2.3. Optimization of the instrumental conditions of LIBS

A Doehlert design [35] was used to optimize the experimental
LIBS variables. The variables and their respective levels were as
follows: a laser energy of 50, 63, 75, 88, and 100 mJ, delay time of 0,
0.1, 0.2, 0.5, 1.0, 1.5, and 2.0 ms and spot size of 50,100, and 150 mmA
total of 15 experiments were performed in triplicate, considering
the central point. The experiments for the optimization of the
conditions were performed using four classes of polymers (poly-
ethylene PE, polycarbonate PC, polypropylene PP and polyamide
PA).

2.4. Data collection and chemometric evaluation

For data treatment, twelve different normalization modes were
tested to compensate for signal variations and sample matrix dif-
ferences [36]. The best results were those normalized by the indi-
vidual norm and averaged over n pulses. The data set was organized
using Microsoft Excel, and a routine developed in Matlab 2009
(MathWorks, Natick, USA) was used for data normalization. Aurora
software (Applied Spectra) was employed for the identification of
emission lines, and Pirouette 4.5 (Infometrix, Bothell, USA) was
used to calculate the data classification models. The data set was
organized into a matrix with 477 rows and 10 columns, in which
the rows represented the polymer samples and the columns rep-
resented the variables.

For all polymer fragments, 5 points were randomly selected,
upon which 10 laser pulses per point were performed. A previous
surface cleanup had been performed using a single pulse of 10 mJ
and with a 200 mm spot size. After this procedure, the optimized
conditions were used. Initially, PCA was performed to evaluate
whether LIBS could differentiate the classes of polymers investi-
gated. Variable selection was based on the intensity ratios of
selected elemental lines and molecular bands: C (247), H (656), N
(742 þ 744 þ 747), O (777) and C2 (516). After this selection, two
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Fig. 1. Representative spectra of the analyzed polymers: ABS, PS, PE, PC, PP and PA.
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classification models for the identification and classification of
polymers were proposed: KNN and SIMCA.

3. Results and discussion

3.1. Optimization of LIBS

In order to evaluate the conditions of the LIBS instrumental
parameters, the interclass distance (ICD) from the SIMCA classifi-
cation model was used with the goal of identifying an experimental
condition that reflected a high ICD, i.e., high discrimination among
the polymers investigated. Six interclass distances (PExPC, PExPS,
PExPA, PCxPS, PCxPA, PSxPA) were calculated and converted to a
geometric average in order to obtain a committed experimental
condition. To obtain dependable results, the quality of the mathe-
matical model was evaluated, i.e., if the model can satisfactorily
describe the behavior of the experimental values. To assess the
quality of the model, the lack of fit was verified. If the mathematical
model presents a good fit to the experimental data, the mean
square lack of fit (MSlof) should reflect only the random errors
inherent to the system. Additionally, the mean square pure error
(MSpe) should also be an estimate of these errors, and it is assumed
that these two values are not significantly different. Thus, it was
possible to use the F distribution to assess whether there was any
significant difference between these two means. The quality of the
model was tested by analysis of variance (ANOVA). Thus, for the
considered model, there was no lack of fit because MSlof/MSpe
(0.33) was lower than Ftable (19.16). After evaluation of the model,
the best experimental conditions (high interclass distances) were
represented by the central point: laser energy of 75 mJ, delay time
of 0.5 ms and spot size of 100 mm.

3.2. Selection of emission lines and molecular bands for analysis

A typical spectrum of each polymer analyzed is presented in
Fig. 1. As expected, carbon and hydrogen had spectral lines with
high intensity. Additionally, molecular bands for C2 can be
observed. Other lines observed were related to N, O, Ca, Na, Mg and
Ca. The emission intensity ratios of the molecular bands of C2, as
well as C, H, O and N, were the parameters required for the iden-
tification of organic compounds. Under the experimental condi-
tions, atmospheric nitrogen and oxygen may have influenced the
spectra obtained. Therefore, signals of nitrogen and oxygen could
appear in the spectra but were not present in the polymers. A better
approach would be to use an inert atmosphere composed of helium
or argon, for example. However, our objective was to analyze
polymer e-waste in real conditions of a recycling company, in
which is not possible use an inert atmosphere.

Variable selection was based on the intensity ratios of emission
lines and molecular bands commonly used for the qualitative
identification of polymers [30,31]. The emission lines of C (247), H
(656), N (742 þ 744 þ 747), and O (777) and the molecular band of
C2 (516) were used to calculate the theoretical ratios, which are
shown in Table 1. After analyzing this table, several observations are
apparent: the polyamide (PA) polymer, for instance, was mainly
characterized by a high C(247)/C2(516) ratio, and the C2(516)/
N(742 þ 744þ777) ratio was high for ABS and PS.

3.3. Exploratory analysis using PCA

With the obtained data matrix (277 samples and 10 variables),
PCA analysis was conducted with the autoscaled data. Initially, PCA
was generated with six classes of polymers (ABS, PS, PE, PC, PP and
PA); however, it was not possible to obtain separation between ABS
and PS. This separation difficulty was due to the similarity between
the styrene repeating unity found in both of these polymers.
Therefore, these two polymers were grouped into a single class, and
PCA with five classes was newly generated. Five classes were
analyzed, assessing the ratios of the emission lines of C (247), H
(656), N (742 þ 744 þ 747), and O (777) and the molecular band of
C2 (516). The scores and loadings of first three principal compo-
nents were evaluated, and Fig. 2a presents the score plot for
PC1xPC2 for different samples, with 61.3% of the explained vari-
ance. Fig. 2b presents the loading plot for PC1xPC2 using different
ratios of the emission lines and molecular band.

In Fig. 2a, there is separation between the five classes of poly-
mers in our study. The aliphatic polymers (PE, PP and PA) are
separated from the aromatic polymers (ABS, PS and PC). This dif-
ferentiation was possible because the C2 signal was lower for the
aliphatic polymers [29].
3.4. Classification model proposition

Fig. 3 shows the figures of merit for the proposed classification
models. Five classes of polymers were studied, and two classifica-
tion models were proposed for each class: KNN and SIMCA. In the
case of KNN, three neighbors were selected for the five classes. For
SIMCA, the number of principal components was 2 or 3 for the five
classes considered. The data set was divided into calibration (277)
and validation (200) samples, and Fig. 3 shows the accuracy,
sensitivity, false alarm rate and specificity calculated for validation
data set in each model. Between the two models, KNN presented
the best results, with an accuracy of 91e100%. In the case of SIMCA,
the accuracy ranged from 89 to 92%.



Table 1
Polymers used and their average and range ratios.

Variable Evaluated ratio ABS and PS PE PC PP PA

Average
Ratio

Range
Ratio

Average
Ratio

Range
Ratio

Average
Ratio

Range
Ratio

Average
Ratio

Range
Ratio

Average
Ratio

Range
Ratio

1 C(247)/H(656) 2.8 1.3e4.2 1.8 0.9e2.5 3.0 1.4e5.1 1.6 0.5e2.5 1.9 0.7e3.1
2 C(247)/C2(516) 5.2 2.2e10.3 8.6 2.5e12.5 7.6 2.8e16.8 6.0 1.1e20.6 23.9 7.8e49.1
3 C(247)/N(742 þ 744þ747) 4.5 2.0e7.4 3.9 1.7e6.0 3.9 1.9e7.8 3.6 0.9e6.2 3.2 1.2e5.6
4 C(247)/O(777) 2.7 1.2e4.6 2.3 1.0e3.7 2.1 1.1e4.1 2.1 0.5e3.9 1.8 0.7e3.2
5 H(656)/C2(516) 1.9 1.0e3.0 4.7 2.3e6.3 2.6 0.9e4.5 3.5 1.4e8.8 13.5 3.8e32.7
6 H(656)/N(742 þ 744þ747) 1.7 1.3e2.1 2.1 1.9e2.4 1.3 0.8e1.7 2.2 1.5e2.9 1.7 1.2e2.3
7 H(656)/O(777) 1.0 0.8e1.3 1.3 1.1e1.4 0.7 0.5e0.9 1.3 0.9e1.6 1.0 0.6e1.3
8 C2(516)/

N(742 þ 744þ777)
1.0 0.6e1.7 0.5 0.3e0.8 0.6 0.3e1.0 0.7 0.2e1.4 0.15 0.05e0.45

9 C2(516)/O(777) 0.6 0.3e1.0 0.3 0.2e0.5 0.3 0.1e0.6 0.4 0.1e0.8 0.09 0.03e0.26
10 O(777)/N(742 þ 744þ747) 1.7 1.6e1.8 1.7 1.6e1.8 1.8 1.7e1.9 1.7 1.6e1.9 1.8 1.6e2.1
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Fig. 2. (a) Score and (b) loading plots for PC1xPC2 of the analyzed polymers.
Fig. 3. Accuracy, sensitivity, false alarm rate and specificity obtained for the (a) KNN
and (b) SIMCA models.
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Table 2
Identification of samples by the recycling company, DSC and proposed models.

Sample Recycling company DSC KNN SIMCA

1 ABS ABS ABS or PS ABS or PS
2 PPO/PSa PPO/PSa ABS or PS Not predicted
3 POMb PE PE Not predicted
4 PS PE PE PE
5 ABS PS ABS or PS ABS or PS
6 ABS ABS ABS or PS ABS or PS
7 PC PC PC PC
8 ABS ABS ABS or PS ABS or PS
9 ABS ABS ABS or PS ABS or PS
10 PS PS ABS or PS ABS or PS
11 PS PS ABS or PS ABS or PS
12 ABS ABS ABS or PS ABS or PS
13 PS PS ABS or PS ABS or PS
14 PC PC PC PC
15 PS PS ABS or PS ABS or PS

a Blend of poly(phenylene oxide)/polystyrene.
b Polyoxymethylene.

V.C. Costa et al. / Polymer Testing 59 (2017) 390e395394
3.5. Identification of samples by recycling company, DSC and
proposed models

The 15 samples provided by the recycler were initially identified
by the KNN and SIMCA models and then analyzed by DSC, which is
a reference technique based on the principles of thermal analysis.
All samples were identified by their DSC glass transition tempera-
ture (Tg) except samples 3 and 4, which were identified by their
fusing temperature. Table 2 shows the results obtained from DSC,
KNN, SIMCA and the results provided by the company when con-
ventional identification was used.

The results were consistent for most samples; however, there
were discrepancies between the results of samples 2, 3, 4 and 5.
According to the recycling company, sample 2 was a blend of pol-
y(phenylene oxide)/polystyrene, which is consistent with the re-
sults obtained from DSC. However, using KNN, the predicted class
was 1 (ABS or PS), and the SIMCA model did not predict any of the
studied classes. The KNNmodel is deterministic and thus predicted
the sample to be Class 1. However, the model was not calibrated to
identify the sample in question. On the other hand, the SIMCA
model is probabilistic and did not predict this sample class because
the model had not been calibrated to identify that type of polymer.
Samples 3 and 4 were identified by the recycling company as pol-
yoxymethylene (POM) and PS, respectively. These results were not
consistent with those obtained from DSC and KNN, which showed
that these samples belonged in class 2 (PE). The SIMCA model did
not predict sample 3 but predicted sample 4 to be PE, which agrees
with the results of DSC and KNN. Sample 5 was identified by the
recycling company as ABS; DSC identified this sample as PS, and the
KNN and SIMCAmodels classified this sample in Class 1 (ABS or PS).
A limitation of KNN and SIMCA models is that it is not possible to
discriminate between ABS and PS samples.
4. Conclusion

LIBS together with discriminant function analysis were used for
the identification and classification of five groups of the most
commonly used polymers in the electronics industry. Classification
models (KNN and SIMCA) were developed using the theoretical
ratios of the emission lines and molecular bands obtained from
LIBS. The predictive abilities of the models were similar, showing
that these two models can be used to identify and classify the
investigated polymers. The results show that LIBS combined with
chemometric tools is a simple, inexpensive, accurate and fast
method that can be used for the identification and classification of
e-waste polymers.
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