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Abstract
The potential benefits and risks of physical exercise on fetal development during pregnancy remain unclear. The aim was to
analyze maternal oxidative stress status and the placental morphometry to relate to intrauterine growth restriction (IUGR)
from diabetic female rats submitted to swimming program after embryonic implantation. Pregnant Wistar rats were distributed
into 4 groups (11 animals/group): control—nondiabetic sedentary rats, control exercised—nondiabetic exercised rats,
diabetic—diabetic sedentary rats, and diabetic exercised—diabetic exercised rats. A swimming program was used as an
exercise model. At the end of pregnancy, the maternal oxidative stress status, placental morphology, and fetal weight were
analyzed. The swimming program was not efficient to reduce the hyperglycemia-induced oxidative stress. This fact impaired
placental development, resulting in altered blood flow and energy reserves, which contributed to a deficient exchange of
nutrients and oxygen for the fetal development, leading to IUGR.
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Introduction

Diabetes mellitus is a group of metabolic diseases due to hyper-

glycemia, resulting from defects in insulin secretion and/or

action.1 Diabetic pregnancy is complicated due to the meta-

bolic demand of fetal, placental, and enclosure development.

In this case, compensatory mechanisms are needed, and in

cases where no compensatory mechanisms occur, it can result

in maternal and fetal impairment.2,3

The balance between the fetal nutrient demand and the

maternal–placental supply regulates the fetal growth.4 The

altered fetal growth (macrosomia in human and intrauterine

growth restriction [IUGR] in experimental animals) in preg-

nancies complicated by diabetes is the result of abnormal sub-

strate availability in placental transfer capacity.4,5 Besides,

diabetes causes an exacerbated oxidative stress in pregnancies,

which is associated with an increase in embryonic oxygen-free

radicals, because of its relatively weak antioxidant defense,

especially at the early stages of organogenesis.2,6

Physical activity has long been known for its role in control-

ling glycemic levels by direct or indirect effects on insulin

action.7,8 However, a major question remains regarding the

correlation between the potential benefits and risks of physical

exercise on fetal development during human pregnancy. A pre-

vious study demonstrated that swimming applied to diabetic

rats from day 7 (after embryo implantation) to day 20 of preg-

nancy led to an improvement in maternal lipid metabolism,

showing beneficial results.9 Besides, these rats presented

reduced embryonic death rates (resorption) compared to dia-

betic nonexercised dams.10 Damasceno et al5 demonstrated that

nondiabetic and diabetic rats exercised prior to and during

whole pregnancy showed fetuses with IUGR.
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Therefore, the objective of this study was to analyze mater-

nal oxidative stress status and the placental morphometry to

relate to IUGR in diabetic female rats submitted to swimming

program after embryonic implantation, considering that exer-

cise might lead to changes in the maternal oxidative stress

status.

Materials and Methods

Experimental Animals

Wistar female rats, obtained from the São Paulo State Univer-

sity (UNESP) Vivarium (São Paulo, Brazil), were maintained

in an experimental room under conditions with controlled tem-

perature (22�C + 2�C) and humidity (50% + 10%) and a 12-

hour light–dark cycle, with ad libitum access to commercial

diet (Purina rat chow; Nestlé, St Louis, Missouri) and water.

The procedures and animal handling were performed in accor-

dance with the guidelines provided by the Brazilian College of

Animal Experimentation in agreement with the International

Guiding Principles for Biomedical Research Involving Ani-

mals promulgated by the Society for the Study of Reproduction

and were authorized by the Ethical Committee for Animal

Research of the UNESP, Brazil (Process number 353).

Experimental Diabetes Induction

Diabetes was induced by streptozotocin (SIGMA Chemical

Company, St Louis, Missouri). Streptozotocin was dissolved

in citrate buffer (0.1 mol/L, pH 6.5) and administered (intrave-

nously [IV]) at a dose of 40 mg/kg body weight. Nondiabetic

rats received only (IV) citrate buffer. Blood glucose concentra-

tions were measured by One Touch Ultra Johnson & Johnson

glucometer (Johnson & Johnson, HDI Home Diagnostics Inc,

Fort Lauderdale, Florida) 7 days after the induction of diabetes.

For inclusion criteria, the diabetic state was confirmed by blood

glucose levels �300 mg/dL. For nondiabetic adult rats that

received only citrate buffer, the inclusion criteria used was

blood glucose levels <120 mg/dL.11

Mating Procedure

All female rats were mated overnight with nondiabetic male

rats. The day when sperms were found in the vaginal smear was

designated as gestational day 0. The mating period consisted of

15 consecutive days, a period comprising approximately 3

estral cycles, until a replicate number of groups was obtained.

However, during this period, nonmated female rats were con-

sidered to be infertile and were discarded from the study.12

Calculation of Sample and Experimental Groups

To calculate the sample size for this experiment, the blood glu-

cose concentration was estimated in rats with severe diabetes,

which were obtained from previous studies in the same labora-

tory. Considering a reduction of 10% and a power of 80%, the

minimum number obtained was 11 participants per group.

Then, after mating, the female rats were randomly distributed

(by lot) into 4 experimental groups that constituted 11 ani-

mals/group: control (C)—sedentary nondiabetic, control exer-

cised (CEx)—exercised nondiabetic, diabetic (D)—sedentary

diabetic, and diabetic exercised (DEx)—exercised diabetic.

Exercise Program

For exercise, we used a swimming program according to the

procedure by Volpato et al.10 To familiarize the rats to the

swimming system (water), the rats were daily exposed to water

for 15 minutes for 5 days in a cage (100� 70� 60 cm) contain-

ing water at a depth of 10 cm at 32�C. This period corresponded

to the interval between diabetes induction and the mating

period. Afterward, the female rats that were familiarized to the

swimming system were placed in a cage containing water at a

depth of 40 cm. Exercise on the first day under these conditions

was about 20 minutes, with progressive increases of 10 minutes

each day until they completed 60 minutes. Following, the rats

were trained to swim for 1 hour daily until the end of preg-

nancy. Training for swimming was provided in water with a

temperature of 32�C between 9 AM and 10 AM for 6 days a week.

The pregnant rats that remained in water at a depth of 10 cm at

32�C were classified as sedentary.

Evaluation at Term of Pregnancy

Blood glucose levels and maternal weight were measured at

approximately 9 AM every 7 days until the end of pregnancy.

At day 21 of pregnancy, after determination of maternal

weight, the rats were anesthetized, and the uterine horns were

exposed for weighing the fetuses and their respective placentas.

The placental efficiency was calculated as the ratio of fetal

weight and placental weight.13 One placenta from each uterine

horn was sectioned medial sagitally and fixed in 10% buffered

formalin before being processed for paraffin embedding.

Placental Morphometry

Formalin-fixed placentas were dehydrated in a graded ethanol

series, embedded in paraffin according to a standard protocol,

sectioned at 5 mm, and mounted on glass slides for hematoxy-

lin–eosin staining. For histological analysis, 11 placental

blocks (11 blocks/group—1 placenta/dam) were cut in the

longitudinal direction. The placental morphometric analyses

were performed in a computerized image system coupled to a

photomicroscope through a digital camera. The slides were

preselected to assure the presence of all placental layers in the

sample. From each slide, 6 areas were randomly selected. The

decidua and junctional zones (mm2) were evaluated at 100�
magnification, while the labyrinthine region was evaluated at

a magnification of 25�.

Determination of the Oxidative Stress Parameters

The samples of blood collected in heparinized tubes were pro-

cessed and washed erythrocytes were collected for the
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determination of lipoperoxidation marker (malondialdehyde

[MDA]) and antioxidant substances (superoxide dismutase

[SOD] and glutathiones) according to the methodology of

Damasceno et al.14

Statistical Analysis

Analysis of variance and Student-Newman-Keuls test were

used for quantitative variables with normal distribution. Differ-

ences were considered statistically significant if P < .05.

Results

Maternal Glycemia

The blood glucose levels of the nondiabetic groups (C and

CEx) were lower than 120 mg/dL during pregnancy. The swim-

ming program did not alter the blood glucose levels of the non-

diabetic (CEx vs C) and diabetic female rats (DEx vs D)

throughout the pregnancy. The diabetic animals presented le-

vels maintained above 300 mg/dL during pregnancy, regardless

of the swimming program (Figure 1).

Maternal Oxidative Stress Parameters

Superoxide dismutase activity increased in the exercised non-

diabetic animals compared to the sedentary group (C). The

sedentary diabetic female rats (D) had increased level of MDA

compared to C group. The DEx rats had decreased levels of

glutathione peroxidase (GSH-Px) and elevated SOD activity

compared to the C group. This same group presented increased

MDA levels and decreased SOD levels when compared to the

D group (Table 1).

Maternal Reproductive Outcomes and Placental
Morphometry

The maternal weight gain, with and without uterine content,

was lower in all experimental groups compared to C group

(Figure 2). The fetal weight was also lower in all experimental

groups than the C group. The CEx rats presented placentas with

the lowest weights and the placental efficiency indexes in the

diabetic rats (D and DEx) were decreased in relation to C group.

The mean area of the placental decidua from dams of the D and

DEx groups was significantly lower compared to that of the C

group. The mean area of the placental labyrinthine was lower in

all groups compared to the C group (Table 2). Figure 3 shows

placental morphology and structural changes in the placenta of

diabetic groups. The disarrangement observed in diabetic pla-

centas (D and DEx) was characterized by aberrant cell size in

placental layers, ectopic and spread giant cells, and presence

of cystic spaces.

Discussion

In the present study, the effect of exercise on blood glucose

level was not observed in the diabetic rats during pregnancy.

The lack of exercise effect on maternal hyperglycemia in dia-

betic pregnant female rats was previously observed in other

studies.5,9,10 Similarly, clinical investigations with diabetic

pregnant women confirmed this fact.15

Among the complications of diabetes, oxidative stress has

been widely studied. Oxidative stress is a condition in which

the production of reactive oxygen species (ROS) is alarmingly

high and the available antioxidant defenses is limited, resulting

in damage to DNA, proteins, sugars, and lipids caused by the

excessive free radicals.16 Reactive oxygen species include free

radicals such as superoxide (
�
O2
�), hydroxyl (

�
OH), peroxyl

(
�
RO2), and hydroperoxyl (

�
HRO2

�) as well as nonradical spe-

cies such as hydrogen peroxide (H2O2).17,18 Production of 1

ROS may lead to the production of others through radical chain

reactions. Exposure to free radicals from a variety of sources

has led organisms to develop a series of defense mechanisms,19

such as preventative and repair mechanisms, physical, and anti-

oxidant defenses. Enzymatic antioxidant defenses include

SOD, GSH-Px, and catalase (CAT). Under normal conditions,
�
O2
� is quickly eliminated by antioxidant defense mechanisms.

�
O2
� is dismutated to H2O2 by manganese SOD in the mito-

chondria and by copper SOD in the cytosol.20 H2O2 is con-

verted into H2O and O2 by GSH-Px or CAT in the

mitochondria and lysosomes, respectively. H2O2 can also be

converted into the highly reactive
�
OH radical in the presence

of transition elements like iron and copper. Glutathione is

highly abundant in the cytosol (1-11 mmol/L), nuclei (3-15

mmol/L), and mitochondria (5-11 mmol/L) and is the major

soluble antioxidant in these cell compartments. The following

are the main protective roles of glutathione against oxidative

stress21: (1) glutathione is a cofactor of several detoxifying

enzymes against oxidative stress, for example, GSH-Px, detox-

ifying H2O2, and lipid peroxides by the catalytic action of

Figure 1. Blood glucose levels from nondiabetic or diabetic rats, not
exercised or exercised, after the embryonic implantation period. Data
shown as the mean + standard deviation (ANOVA—Student-
Newman-Keuls posttest) *P < .05—Statistically significant difference
compared with control group. #P < .05—Statistically significant differ-
ence compared with control exercised group. ANOVA indicates anal-
ysis of variance.
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GSH-Px. The capacity of glutathione to regenerate the most

important antioxidants is linked with the redox state of the glu-

tathione disulfide–glutathione couple (GSSG/2GSH).22 Con-

sidering the antioxidant defense of the endocrine pancreas, it

was verified that bcells are particularly sensitive to ROS

because they are low in free-radical quenching (antioxidant)

enzymes such as CAT, GSH-Px, and SOD.23 Therefore, the

ability of oxidative stress to damage mitochondria and mark-

edly blunt insulin secretion is not surprising.24 Evidence in

both, experimental and clinical studies, suggests that free

radical-mediated oxidative stress plays a major role in the

pathogenesis of both type 1 and type 2 diabetes.25,26

Maritim et al27 reviewed in detail that diabetes has multiple

effects on the protein levels and activity of the antioxidant

enzymes, which further augment oxidative stress by causing

a suppressed defense response.

The oxidative stress may be analyzed in the red blood cells

(RBCs). This might be explained because RBCs are vulnerable

to oxidative damage because of their continuous exposure to

oxygen and their high concentrations of polyunsaturated fatty

acids and heme iron.28 In the present study, the diabetic groups

presented increased MDA levels, a marker of lipid peroxida-

tion, in analysis of washed RBCs, confirming oxidative stress.

Several research about oxidative damage indicate that exer-

cise exacerbates the generation of ROS, some of which are free

radicals.29,30 Numerous studies have shown that muscle cells

also release superoxide into the extracellular space,31 so free

radicals readily reach the blood and act on other cells.32 Several

potential alternative sources of free radicals, such as oxidase

systems associated with membranes, nitric oxide production,

and phagocytic processes,33 as well as an increase in lactate

formation, as happens in exhaustive exercise,34 have been pro-

posed to contribute significantly to the overproduction of free

radicals.35

In relation to the influence of swimming on pregnant

rats, this study showed that the exercise contributed to an

increased SOD enzymatic activity in nondiabetic and dia-

betic rats. However, the swimming decreased GSH-Px activ-

ity in diabetic status. These results show that increased SOD

activity was not sufficient to reduce the elevated lipid per-

oxidation in the diabetic dams as a function of the uncon-

trolled metabolism due to severe hyperglycemia. Witt

et al36 verified that the exercise resulted in an increased free

radical concentration in muscle and other tissues and mem-

brane damage, as evidenced by lipid peroxidation, which

depends on the state of training, duration, intensity of exer-

cise, and the tissue examined.

The exercised dams of the different experimental groups

showed a lower gain of maternal weight associated with the

lower corporal weight of the fetuses. This decrease is character-

istic of IUGR, which is related to fetal hypoxia caused by the

practice of exercise, and this was exacerbated by the uncon-

trolled hyperglycemia, corroborating the previous results of

this research group.10 The effects of physical exercise during

fetal development are controversial, mainly regarding the

intensity level of the exercise that is undertaken (light, moder-

ate, or intense), and there are several conflicting reports regard-

ing the effects of intense exercise on the risk of IUGR.37-39 One

possible explanation for confounder factors in the interpreta-

tion of results is the physiological stress caused by exercise

in experimental animals.40 Swimming during pregnancy

increases the plasmatic corticosterone levels in rats,41,42 and

Table 1. Oxidative Stress Status of Nondiabetic or Diabetic Rats, Not Exercised or Exercised, After the Embryonic Implantation Period.a

Groups

Control Control Exercised Diabetic Diabetic Exercised

MDA, nmol/L/gHb 54.60 + 40.15 65.80 + 21.84 319.7 + 191.78b 544.2 + 148.21b,c

SOD, UI/mgHb 7.17 + 3.74 19.63 +5.41b 8.55 + 4.99 16.34 + 6.80b,c

Thiol group, mmol/L/gHb 0.76 + 0.66 1.23 + 0.37 0.64 + 0.56 1.09 + 0.29
GSH-Px, UI/gHb 0.48 + 0.36 0.23 + 0.08 0.22 + 0.15 0.10 + 0.04b

Abbreviations: MDA, malondialdehyde; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; ANOVA, analysis of variance.
aData shown as the mean + standard deviation (ANOVA—Student-Newman-Keuls posttest).
bP < .05—statistically significant difference compared with control group.
cP < .05—statistically significant difference compared with diabetic group.

Figure 2. Maternal and uterine weights from nondiabetic or diabetic
rats, not exercised or exercised, after the embryonic implantation
period. Data shown as the mean + standard deviation (ANOVA—
Student-Newman-Keuls posttest) *P < .05—Statistically significant dif-
ference compared with control group. ANOVA indicates analysis of
variance.
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the effects of swimming-induced stress during pregnancy per-

sist on birth weight through 2 subsequent generations.43

Vaughan et al44 showed that fetuses of corticosterone-treated

dams always weighed less than normal. The corticosterone

induced fetal growth restriction, which was associated with

morphological and functional changes in placental phenotype

that depends on gestational age, particularly related to placental

amino acid transport.

The exercised nondiabetic rats presented reduced placental

weight and labyrinthine area, leading to reduced fetal weight.

In the diabetic female rats, it showed higher placental weights,

showing reduced placental efficiency, which confirms the

Figure 3. Microscopic images of the placentas (hematoxylin and eosin) at day 21 of pregnancy from nondiabetic or diabetic rats, not exercised
or exercised, after the embryonic implantation period. A indicates control group; B indicates control exercised group; C indicates diabetic
group; D indicates diabetic exercised group. D, decidua area; JZ, junctional zone; L, labyrinthine area; CS, cystic spaces presented transudate;
arrow, Giant cells; asterisk, glycogen cells (magnification �40). ANOVA indicates analysis of variance.

Table 2. Fetal and Placental Analysis From Nondiabetic or Diabetic Rats, not Exercised or Exercised, After the Embryonic Implantation Period.a

Groups

Control Control Exercised Diabetic Diabetic Exercised

Fetuses
Fetal weight, g 5.32 + 0.48 4.53 + 0.40b 4.22 + 0.59b 3.84 + 0.45b,c

Placenta
Placental weight, g 0.47 + 0.08 0.39 + 0.08b 0.66 + 0.16b 0.55 + 0.12b,c

Placental efficiency 11.60 + 1.63 11.85 + 1.86 6.70 + 1.65b 7.24 + 1.57b,c

Decidual area, mm2 0.06 + 0.02 0.06 + 0.01 0.05 + 0.01b 0.05 + 0.02b

Junctional area, mm2 0.18 + 0.04 0.16 + 0.03 0.17 + 0.03 0.16 + 0.03
Labyrinthine area, mm2 4.14 + 0.41 3.93 + 0.44b 3.85 + 0.47b 3.86 + 0.32b

aData shown as the mean + standard deviation (ANOVA—Student-Newman-Keuls posttest) and proportions (%; Fisher exact test).
bP < .05—statistically significant difference compared with control group.
cP < .05—statistically significant difference compared with diabetic group.
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inability of the larger placenta to transfer nutrients to the devel-

oping fetus, causing IUGR. The reduction in decidual area from

diabetic dams confirms that the decidua is highly influenced by

the hyperglycemic status.12 Besides, these results show that

swimming did not protect this area, whereas lipid peroxidation

process is exacerbated, which might alter decidual zone, inter-

fering with placental development. The exercised nondiabetic

and diabetic rats presented a significant decrease in laby-

rinthine area, the site of maternal–fetal exchange. Hewitt

et al45 showed that administration of glucocorticoids causes a

permanent deficit in labyrinthine blood vessels in the rat pla-

centa. As discussed previously, the stress caused by exercise

contributed to a deficit in nutrient transport confirmed by

decreased exchange area in the placenta. In addition, the hyper-

glycemia associated with exercise caused structural disarrange-

ment in placenta, which demonstrated ectopic and spread giant

cells and presence of cystic spaces.

The placental alterations verified in this study could justify

that IUGR was caused by exercise program, which is related to

a reduction in placental blood flow in the rats submitted to

acute strenuous exercise. Although the literature showed that

swimming program used in this experiment is moderate,46 the

impaired maternal and fetal outcomes suggest an exercise of

strong/severe intensity.

Thus, the swimming program was not efficient to reduce the

hyperglycemia-induced oxidative stress. This fact impaired

placental development, resulting in altered blood flow and

energy reserves, which contributed to a deficient exchange of

nutrients and oxygen for the fetal development, leading to

IUGR. These findings reinforce the necessity to reach a good

glycemic control combined with interdisciplinary and profes-

sional discussion about exercise intensity and time of exposure

for women during pregnancy.
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