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Due to the continual increase in waste generated from electronic devices, the management of plastics,
which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE
or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the
importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electron-
ics and other industries, this study presents a new application of laser-induced breakdown spectroscopy
(LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics
obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate cal-
ibration models were built using partial least squares (PLS) regression. In general, it was possible to infer
that the relative errors between the theoretical or reference and predicted values for the spiked samples
were lower than 10%.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The worldwide demand for technical plastics and the conse-
quent accumulation of these residues from end-of-life products
are constantly increasing. In 2013, the global production of plastic
was approximately 300 million tons, showing an increase of 4%
from 2012 (Anuar Sharuddin et al., 2016). The same behavior is
exhibited by waste from electrical and electronic equipment
(WEEE or e-waste) (Vazquez and Barbosa, 2016), which is growing
exponentially and contains large amounts of plastic materials
(Aquino et al., 2016).

The technical plastic fraction of WEEE is composed by more
than 15 different polymers. However, acrylonitrile-butadiene-
styrene (ABS), polycarbonate (PC), and their blends are among
the most important plastics used by the electronics industry
(Buekens and Yang, 2014; Tarantili et al., 2010; Taurino et al.,
2010), due to its good characteristics, which can be improved
through the mixture of them. In PC/ABS blends, desirable features,
such as the toughness and heat distortion temperature, are
enhanced from PC, while ABS leads to better processability and
cost reduction. For these reasons, PC/ABS blends are widely used
in important industries, such as the electronics and automotive
(Buekens and Yang, 2014; Kuram et al., 2016).

Regarding the management of plastic residue, which often con-
tains hazardous flame retardants (Aquino et al., 2016; Shao et al.,
2016), the option to dispose these materials in landfills has become
increasingly undesirable, due to the low sustainability, high cost,
and decreasing available space (Ignatyev et al., 2014; Vazquez
and Barbosa, 2016). In this context, the recycling of PC, ABS, and
their blends has been a target of research and practical action in
the last years (Balart et al., 2005; Barthes et al., 2012; Farzadfar
et al., 2014; Hopewell et al., 2009; Jing-ying et al., 2012; Kuram
et al., 2016; Liu and Bertilsson, 1999; Tarantili et al., 2010).

Concerning the analytical aspects, it is evident that precise
knowledge of the amount of PC and ABS in their blends is very
important, from the early steps of recycling (identification/classifi
cation) to the analysis of the obtained product. In addition, precise,
simple, and fast analytical methods are required in quality control
laboratories in industry and research or academic centers.

Several strategies have been employed to determine the com-
position of polymer blends of PC/ABS. The presence of both poly-
mers in the blends can be confirmed using differential scanning
calorimetry (DSC) and dynamic mechanical analysis (DMA), as
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two glass transition temperatures (Tg) are readily observed at 85–
105 �C (ABS) and 150–155 �C (PC) (Adams et al., 1993; Babbar and
Mathur, 1994). Mechanical analyses, such as impact and tensile
tests, are also widely used (Krache and Debah, 2011; Kuczynski
et al., 1994). However, these techniques are time consuming,
require unusual sample preparation for an analytical chemistry
laboratory, conditioning protocols prior to measurement, and pre-
sent low analytical frequency. Near-infrared (NIR) has also been
used to evaluate the proportion of PC and ABS in blends (Scaffaro
et al., 2012); however, it is not suitable for the analysis of black
plastic samples (Beigbeder et al., 2013; Maris et al., 2012;
Masoumi et al., 2012; Roh and Oh, 2016). In this regard, laser-
induced breakdown spectroscopy (LIBS) is an analytical technique
that presents great potential for this application, due to the follow-
ing advantages: high analytical frequency, portability, no or mini-
mal sample preparation, and the possibility of hyphenation
(Galbács, 2015; El Haddad et al., 2014).

LIBS is a multi-elemental technique in which a laser beam
excites and intensively heats a small volume of the sample. The
heated sample is converted to a gaseous plasma state and broken
down into atoms, which produces a characteristic radiation of
light. This light is analyzed spectrally, and through calibration,
the intensity of the spectra indicates the concentration of the ele-
ments in the sample (Musazzi and Perini, 2014). However, some
challenges are still present, such as the low availability of
matrix-matched standards for quantitative analyses and pulse-
to-pulse signal fluctuations that can lead to relative standard devi-
ation (RSD) values higher than 10% (Aquino et al., 2016; Aquino
and Pereira-Filho, 2015; Galbács, 2015).

Despite this, since 1998, a relative high number of publications
have been presented methods for plastic identification using LIBS,
particularly combining the use of different chemometric tools.
Banaee and Tavassoli (2012), for instance, used a chemometric
method based on discriminant function analysis (DFA) to identify
polymers with slight differences among their spectra. Sattmann
et al. (1998) used Artificial neural networks (ANNs) combined with
LIBS with success to identify polymers. Lasheras et al. (2010) used
with success the methods of normalized coordinates (MNC) and
linear and rank correlation to identify polymers with very similar
chemical compositions. Other chemometric tools such as soft inde-
pendent modeling of class analogy (SIMCA), k-nearest neighbor
(KNN) and partial least squares for discriminant analysis (PLS-
DA) have been widely used in the identification and classification
of polymers (Aquino et al., 2016; Aquino and Pereira-Filho, 2015;
Costa et al., 2017). Determining the ratios of different emission
lines and molecular bands associated with the use of principal
component analysis (PCA), was a strategy found in the literature
for identification and classification of polymers (Grégoirie et al.,
2011; Unnikrishnan et al., 2013; Xia and Bakker, 2014).

However, these above mentioned chemometric tools are lim-
ited to classification models proposition for the identification of
samples according to their similarity. Thus, its application for
quantitative analysis of PC and ABS in blends associated to chemo-
metric tools is not reported in the literature. In this sense, partial
least-squares (PLS) technique is often used for the analysis in mul-
tivariate calibration methods aiming quantitative analysis of vari-
ous analytes (Mota et al., 2015; Viegas et al., 2016). PLS
multivariate calibration is strongly used in combination with
near-infrared (NIR) spectroscopy. Sulub and DeRudder (2013), for
example, determining the concentration of polycarbonate and rub-
ber in blends of these materials using PLS models NIR. Thus, the
present study shows and discuss a new application of laser-
induced breakdown spectroscopy (LIBS) using PLS for fast and
direct determination of the amount of PC and ABS in blends of
these materials obtained from samples of e-waste.
2. Materials and methods

2.1. Laser-induced breakdown spectroscopy (LIBS)

LIBS spectra were obtained using a J200 LIBS system (Applied
Spectra, Fremont, CA, USA) controlled by the Axiom 2.5 software
(Applied Spectra). This instrument consists of a 1064 nm Nd:
YAG laser and a 6-channel charge-coupled device (CCD) spectrom-
eter recording spectra information from 186 to 1042 nm. Channel 1
goes from 186 to 309 nm, channel 2 from 309 to 460 nm, channel 3
from 460 to 588 nm, channel 4 from 588 to 692 nm, channel 5 from
692 to 884 nm and channel 6 from 884 to 1042 nm. The spectral
resolution is <0.1 nm from UV to VIS and <0.12 nm from VIS to
NIR. The Axiom 2.5 software from the same manufacturer con-
trolled the operational parameters of the equipment. These param-
eters were the laser pulse energy, which ranging from 0 to 100 mJ,
the gate delay - the time interval between the incidence of the
laser pulse and the start of signal recording by the spectrometer
– ranging from 0 to 2 ms, and the spot size, ranging from 50 to
250 mm. The Axiom 2.5 software also manages the movement of
the sample, assisted by an automated XYZ stage and a
1280 � 1024 complementary metal-oxide semiconductor (CMOS)
color camera imaging system. The software at 1.05 ms establishes
the gate width, which is the time interval that the spectrometer
registers the emission signals.

2.2. Differential scanning calorimetry (DSC)

Differential scanning calorimetry measurements were per-
formed on a Netzsch F3 200 Maia DSC (Netzsch-Gerätebau GmbH,
Selb, Germany) instrument under nitrogen purge. Scanning analy-
sis was carried out from 20 �C to 200 �C with heating and cooling
rates of 20 �C�min�1. The glass transition temperature (Tg) was
determined during the second heating by the inflection method.

2.3. Blend and sample preparation

The multivariate calibration model was built using a set of 11
mixtures of PC/ABS in the following proportions: 100/0, 90/10,
80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, 10/90 and 0/100
(w/w%). These mixtures were prepared according to the following
procedure:

i) Individual dissolution of PC (polycarbonate Lexan 101, Sabic
Company, Campinas, Brazil), ABS granule resin (Cycolac EX
58 Sabic Company, Campinas, Brazil), and sample pieces in
dichloromethane (p.a. ACS reagent, Sigma-Aldrich, St. Louis,
MO, USA) until obtaining a 10% w/v solution.

ii) Attainment of polymer/sample chips after dichloromethane
evaporation, and spreading the solution on a glass plate
under air flux at room temperature (25 �C).

iii) Attainment of polymer/sample powder through grinding the
chips in an analytical mill at 28,000 rpm, and subsequent
sifting of the gross powder through a stainless-steel mesh
sieve (0.5 mm).

iv) All mixtures or sample pellets were prepared using 0.5 g of
the respective powder material. This mass was added in an
aluminum mold and heated in a thermopress at 200 �C for
10 min with a pressure of 0.4 metric tons. Additional details
of this procedure are available in a previous publication
(Aquino et al., 2016).

To evaluate the multivariate calibration model, 6 plastic sam-
ples containing only ABS (black and white pieces) obtained from
scraps of a telephone, keyboards computer, two computer casings
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and monitor were spiked with several amounts of PC. The amount
of the spikes was calculated in order to distribute the samples
along the lower, middle and highest intervals of the calibration
range. After the sample spiking procedure, the 6 samples provided
11 different PC/ABS mixtures, which were prepared using the same
procedure previously described. The choice to use a black piece
was made in order to evaluate the behavior of the method for an
unprepared sample, as black pigments (carbon black) are often
troublesome in near-infrared (NIR) spectroscopy analysis
(Beigbeder et al., 2013; Maris et al., 2012; Masoumi et al., 2012;
Roh and Oh, 2016).

Additionally, 33 samples (from sample 7 to sample 39) with
unknown PC and ABS concentrations were analyzed. These sam-
ples were directly subjected to LIBS analysis without the need for
preparation. Moreover, polypropylene (PP, sample 37), polyethy-
lene (PE, sample 38) and polystyrene (PS, sample 39) samples were
analyzed in order to verify the robustness and specificity of PLS
models for PC and ABS detection. The results were also compared
through visual inspection of the thermogram obtained by DSC
analysis. In addition, the analysis becomes much faster, since the
sample need not be prepared.

2.4. Data collection and analyses

The conditions used for LIBS analyses in this study have been
previously described by Aquino et al. (2016). Before each data
collection the analyzed area was cleaned with laser pulses with
10 mJ laser pulse energy, and 200 mm spot size (Fluence around
32 mJ/cm2). In each sample was performed a data collection in scan
mode with the following laser operation setup: 10 Hz repetition
rate, 75 mJ laser pulse energy, 0.5 ms delay time, 1.05 ms gate
width, and 75 mm spot size (Fluence around 1700 mJ/cm2). For
each sample, approximately 600 spectra (in both sides of the
samples) were obtained at different parts of the samples. The spec-
tra were obtained in 6 lines, and in each one approximately 100
laser pulses were obtained. The following additional laser settings
were used: a scan length of 18 mm, and a speed of 1.0 mm/s. The
emission lines of the elements of interest were identified using
the Aurora software (Applied Spectra).

After spectra acquisition, the workflow was as follows:

i) Organization of data matrices (Microsoft Excel).
ii) Preliminary data inspection performed using the Matlab

software version 2009a (The Matworks, Natick, MA) and a
homemade routine ‘‘libs_treat” (Castro and Pereira-Filho,
2016); libs_treat was applied to detect eventual outlier spec-
tra. In this case, for each sample (rows in the data matrix),
the standard deviation, area, maximum and Euclidean norm
were calculated. If an outlier was detected (e.g., standard
deviation equal to 0), this spectrum was removed by the
analyst, and then 12 normalization modes were automati-
cally executed. This process was required because LIBS spec-
tra are sensitive to several potential problems, including
variations in the sample surface, the stability of the laser
and the interaction between the laser and the sample.

iii) Multivariate calibration model using Pirouette software ver-
sion 4.5 (Infometrix, Bothell, WA). The calibration model
was obtained by partial least squares (PLS) regression of
the normalized sample data set. In the application of PLS,
the data set was subdivided into 11 samples for calibration
(the 11 mixtures PC/ABS) and 44 for validation: 11 mixtures
that were prepared using the same procedure described for
calibration data set and 33 samples without preparation. In
this step the whole peak profile (12,288 variables) was ini-
tially used. The efficiency of the 12 normalization modes
was assessed comparing the values of standard error of cal-
ibration (SEC) for the proposed models. The best results
were those that presented the lowest SEC. Fig. 1 shows a pic-
torial description of steps for construction of the calibration
models.

3. Results and discussion

3.1. General characteristics of LIBS spectra obtained for PC/ABS blends
in different proportions

Fig. 2 shows LIBS spectra for different materials used in the
multivariate calibration. Fig. 2a and b correspond to the PC/ABS
(100/0 w/w%) and PC/ABS (0/100 w/w%) blends, respectively.
Fig. 2c was obtained from sample 1, black telephone scrap that
was 100% ABS (labeled identification), and was spiked with PC to
provide a final mixture of PC/ABS of 50/50 w/w% (mixture 2), while
Fig. 2d was acquired from sample 7, computer keyboard, and was
analyzed as obtained (not prepared, nor spiked).

The four spectra in Fig. 2 represent samples at the extremes and
around the center of the calibration range, and the main emission
signals, indicated in Fig. 2 and listed in Table 1, are associated with
the same elements, with the exception of Mg.

This indicates that the simple selection of a line or line ratios to
generate a univariate calibration will hardly provide a satisfactory
prediction of the PC and ABS content of the blend. Based on this, a
multivariate calibration using PLS regression was performed. In
PLS regression, all relevant variables are considered. This allows
the identification of factors (linear combinations of the indepen-
dent variables X) that better fit one or more dependent variables
Y (response variables) (Geladi and Kowalski, 1986; Sjöström
et al., 1983).

Using the PLS regression vectors, the evaluation of the most
important emission lines, listed in Table 1, was possible for the
development of the multivariate calibration model. In addition,
the peak profiles for the most important emission lines (high
regression vectors) are shown in Fig. 3a–i. Carbon emission lines
(Fig. 3a and b) presented high regression vectors as expected.
The molecular band of C2 (Fig. 3c) is important in differentiation
between the polymers aromatic rings in PC and ABS. This differen-
tiation is possible because PC has a more intense signal in relation
to ABS and several studies have using this property to separate
polymers (Anzano et al., 2008; Costa et al., 2017; Grégoirie et al.,
2011). Emission lines related to CN (Fig. 3d), N (Fig. 3e), and O
(Fig. 3f) presented also high regression vectors.

Calcium (Fig. 3g), present in the spectra, is commonly added to
polymers in the form of calcium carbonate (CaCO3). Calcium com-
pounds can be used as pigments, fillers, reinforcement agents, sta-
bilizers and flame retardants (Aquino and Pereira-Filho, 2015;
Buekens and Yang, 2014; Kumar and Gupta, 2003). The Na signal
(Fig. 3h) can be attributed to residual concentrations of sodium
persulfate used as a water-soluble initiator during thermoplastic
production (e.g., PC and ABS, which are widely used in electronic
devices) by the emulsion polymerization technique (Kumar and
Gupta, 2003). Na in the polymers can be also explained because
NaOH is used in polycarbonate synthesis, as bisphenol A ((CH3)2C
(C6H4OH)2) is treated with this base (Ebewele, 2000). The last
emission line (Fig. 3i) is related to H 656.28 nm.

Additionally, emission lines were observed for Sb and Ti, which
are very common in PC and ABS plastics (Aquino et al., 2016). The
presence of Sb is strongly linked to antimony trioxide (Sb2O3),
which is an inorganic flame retardant widely used in plastics
employed in electronic devices (Buekens and Yang, 2014). The Ti
lines are related to the white pigment, and surely, the main source
is from the addition of titanium dioxide (TiO2) (Kumar and Gupta,
2003).
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Fig. 1. Pictorial description of steps for signal normalization selection and construction of the calibration models.
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The stability of the blend signals was confirmed over thirty
days. The first analysis was performed on the day of mixtures pro-
duction, the second was carried out after 15 days, and the third on
the thirtieth day. The RSDs for the signals over the full spectrum
varied from 8 to 19%. All analyses were performed in triplicate,
and the number of laser pulses per mixture in each analysis was
600. The signal to background ration (SBR) and signal to noise ratio
(SNR) for C I 193.09 emission line was 116 and 101, respectively.
3.2. PLS models for the prediction of PC and ABS in plastics produced
from their blends

The spectral profile obtained by LIBS presents high complexity
due to the abundance of emission lines for several elements, in
addition, presents problems of repeatability of signals. In LIBS anal-
ysis, these reported limitations are usually caused by the complex-
ity of the interaction between the laser and the sample
(particularly with physically or chemically heterogeneous sam-
ples). Fluctuations in laser-plasma interactions includes the rate
of ablation and plasma characteristics, or differences in instrumen-
tal settings (i.e., laser pulse energy, integration gate time, focal
length and detector settings), as well as differences in the number
of accumulated pulses (Tognoni and Cristoforetti, 2016). To over-
come the signal fluctuations and sample matrix variations, were
employed 12 normalization modes of signal after obtained around
600 spectra for each sample: signal average (Norm_1), signal nor-
malized by individual norm and then averaged (Norm_2), normal-
ized by area (Norm_3) and by maximum (Norm_4) and then
averaged, signal sum (Norm_5), signal sum after normalization
by individual norm (Norm_6), area (Norm_7) and maximum
(Norm_8) and signal average (Norm_9 and Norm_11) and
sum (Norm_10 and Norm_12) after normalization by C signals
(I 193.09 and I 247.85 nm). Additional details about normalization
modes are available in publication of Castro and Pereira-Filho
(2016). The lowest SEC was the criteria to select the best normal-
ization to obtain the calibration models. SEC values were calcu-
lated according to Eq. (1):

SEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � ŷiÞ2

q

n� 1
ð1Þ

where yi is the reference concentration PC and ABS and ŷi is the pre-
dicted concentration for dataset calibration and n is the number of
samples.

In this step, the 11 PC/ABS blends were used: 100/0, 90/10,
80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, 10/90 and
0/100 w/w%. Initial models were calculated using the entire spec-
tral range (186–1042 nm). Later, other models were calculated
excluding the range from 278.01 to 281.78 nm in order to disre-
gard the most intense Mg emission lines (see Fig. 2). This change
in relation to the first model was performed to take into account
that Mg is not present in PC or ABS molecules. Mg in the form of
compounds, such as magnesium hydroxide and hydromagnesite,
is used as a flame retardant, and its concentration in the samples
can change according to the polymer application (Hornsby, 2001;
Laoutid et al., 2009; Morgan and Gilman, 2013; Visakh and Arao,
2015). Thus, keeping the interval of the LIBS spectra where the
Mg lines are the most intense in the model can reduce its accuracy.
Fig. 4 shows the comparison among the 12 normalization modes,
and the best result (lowest SEC) was obtained with signal normal-
ized by individual area and sum over n pulses (Norm_7). A horizon-
tal red line was inserted in this figure in order to compare the
results. As can be observed, the SEC value for PC or ABS was around
3% and using only the signal average (Norm_1) the SEC value was
2-fold higher.
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Fig. 2. LIBS emission spectra for the 100% w/w PC (a), 100% w/w ABS (b), sample 1 spiked to provide a PC/ABS 50/50 w/w% mixture (c), and sample 7 without spiking (d).

Table 1
More intense emission lines (I, atomic and II, ionic) associated with the observed
elements in the spectra shown in Fig. 2.

Chemical
species

k (nm)

aC2 469.74; 471.50; 473.70; a516.52; 558.54 and 563.55
aC I a193.09 and a247.85
Sb II 259.08
Sb I 252.85
Ca I 422.67
aCa II a393.35 and a396.82
Ti I 498.17; 499.10; 499.95; 500.72; 501.41; 517.37; 519.29 and

521.03
aCN a386.17; a387.12 and a388.31
aNa I 588.99 and 589.59
H 656.28
aN I 742.36; 744.22 and 746.83
K I 766.48; 769.89
aO I a777.19; a777.41 and 777.53

a Emission lines that presented high regression values.
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Table 2 shows the correlations obtained between the predicted
and expected values for PC (0.996) and ABS (0.996) and the figures
of merit for the calculated PLS models. Standard error of calibration
(SEC) and cross-validation (SECV) were 3.4–5.6%, respectively, and
in both models 2 latent variables (LV) were used with almost 70%
of explained variance.
To verify the applicability of the results obtained with the PLS
models, a reference method, DSC, was used to verify the presence
of PC and ABS in the constructed mixtures blends. DSC is a robust
analysis widely employed to identify polymer matrices and also
quantitative estimation of polymer blends (Ehrenstein et al.,
2004) in especially PC/ABS blends (Greco et al., 1994; Santana
et al., 1998).

The DSC thermograms for all mixtures blends in the calibration
model presented in Fig. 5 show two glass transitions. The only
exceptions are Fig. 5a (PC/ABS = 100/0) and Fig. 5k (PC/
ABS = 0/100), which present only one glass transition. The glass
transition temperatures were estimated as the half-step tempera-
ture related to the change in heat capacity. The higher glass transi-
tion temperature of 145 �C (Tg1) is attributed to first blend
component, polycarbonate (PC), and the lower glass transition
temperature of 110 �C (Tg2) is attributed to the second blend com-
ponent, acrylonitrile-butadiene-styrene (ABS). It is observed that
the profiles obtained from the thermograms are concordant with
the results presented in Table 2.
3.3. Application

To validate the PLS models, the 11 mixtures obtained from sam-
ples 1 to 6, listed in Table 3, were analyzed. For a better interpre-
tation of these data, the relative error between the concentrations
predicted by the combination of LIBS and the PLS model was calcu-
lated and added according to Eq. (2):



192.0 192.5 193.0 193.5 194.0

0.0

0.1

0.2

0.3

0.4 a) C I 193.09
N

or
m

al
iz

ed
 b

y 
in

di
vi

du
al

 a
re

a 
an

d 
su

m
 o

ve
r n

 p
ul

se
s

Wavelenght (nm)
247.0 247.4 247.9 248.3 248.8

0.0

1.0

2.0

3.0 b) C I 247.85

N
or

m
al

iz
ed

 b
y 

in
di

vi
du

al
 a

re
a 

an
d 

su
m

 o
ve

r n
 p

ul
se

s

Wavelenght (nm)

515.0 515.5 516.0 516.5 517.0

0.1

0.2

0.3

0.4

0.5 c) C2 516.52

N
or

m
al

iz
ed

 b
y 

in
di

vi
du

al
 a

re
a 

an
d 

su
m

 o
ve

r n
 p

ul
se

s

Wavelenght (nm)
382.0 384.0 386.0 388.0 390.0

0.0

0.1

0.2

0.3

0.4

0.5 CN 388.31

CN 387.12

d)

CN 386.17

N
or

m
al

iz
ed

 b
y 

in
di

vi
du

al
 a

re
a 

an
d 

su
m

 o
ve

r n
 p

ul
se

s

Wavelenght (nm)

740.0 742.0 744.0 746.0 748.0 750.0
0.0

0.1

0.3

0.4

0.6

0.8

0.9
N I 746.83

N I 744.22

e)

N I 742.36

N
or

m
al

iz
ed

 b
y 

in
di

vi
du

al
 a

re
a 

an
d 

su
m

 o
ve

r n
 p

ul
se

s

Wavelenght (nm)
776.0 776.5 777.0 777.5 778.0 778.5 779.0

0.0

0.3

0.5

0.8

1.0

1.3

1.5

O I 777.41O I 777.19f)

N
or

m
al

iz
ed

 b
y 

in
di

vi
du

al
 a

re
a 

an
d 

su
m

 o
ve

r n
 p

ul
se

s

Wavelenght (nm)

Fig. 3. Signal profiles of the most important emission lines selected by PLS regression vectors: C I 193.09 (a); C I 247.85 (b); C2 516.52 (c); CN 386.17, 387.12 and 388.21 (d); N
I 742.36, 744.22 and 746.83 (e); O I 777.19 and 777.41 (f); Ca II 393.35 and 396.82 (g); Na I 588.99 and 589.59 (h); and H 656.28 (i).
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Relative error% LIBS;Addedð Þ ¼ LIBSPredicted � Addedvalue
Addedvalue

� 100 ð2Þ

The results are presented in Table 3, where negative numbers
represent that the polymer content predicted by the PLS model
is lower than the theoretical (reference) value added to the sam-
ple. In general, it is possible to infer that the differences between
the theoretical and predicted values are on average lower than
10%, except for mixtures originating from samples 1 and 4. A
possible explanation for this difference is that this material
(samples 1 and 4) may not be 100% ABS, mainly because this
is a recycled plastic. Despite it being labeled pure ABS, it is rel-
atively common that recycled plastics present residual amounts
of other plastics. Since the morphology of ABS is based on a con-
tinuous phase of styrene-acrylonitrile copolymer (SAN) and a
microdispersed elastomeric phase of polybutadiene, thermos-
oxidative degradation can significantly affect the chemical nature
of these phases in the recycling processes (Karahaliou and
Tarantili, 2009).

In addition, regarding samples 1 and 4, at least theoretically,
another factor that can contribute to the difference between the
predicted and obtained results is a variation in the proportions
of the monomers that compose ABS, making them different than
those of the ABS used in the construction of the PLS models.

A point that needs be highlighted is that the standard deviations
were consistently lower than 5% and the Relative Standard Devia-
tion (RSD) values are lower than 10% in all cases (n = 3). This is very
good behavior, since the LIBS technique usually presents standard
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Fig. 3 (continued)
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Fig. 4. Standard error of calibration (SEC) using the normalization modes (from
Norm_1 to Norm_12) proposed to obtain calibrations models for PC and ABS.

Table 2
Predicted PC and ABS concentrations (w/w%) of samples in the calibration data set
and figures of merit for the PLS models.

PC/ABS PC ABS
Reference concentrations
(expected)

Predicted
concentrations

Predicted
concentrations

100/0 97 3
90/10 86 14
80/20 83 17
70/30 71 29
60/40 60 40
50/50 50 50
40/60 44 56
30/70 33 67
20/80 21 79
10/90 5 95
0/100 0 100
SEC (w/w%) 3.4 3.4
SECV (w/w%) 5.6 5.6
R2 0.996 0.996
LV 2 2
Explained variance (%) 69.3 69.3
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deviations higher than 10% (Aquino et al., 2016; Aquino and
Pereira-Filho, 2015; Galbács, 2015).

In addition, 33 samples (see Table 4), which had an unknown
PC/ABS content, were analyzed as obtained (not spiked), and its
predicted PC and ABS content was obtained using LIBS and the
PLS model. The results were also compared through visual inspec-
tion of the thermogram obtained by DSC analysis.
These results prove the feasibility of the LIBS method as a useful
and fast alternative for the determination of the PC and ABS con-
tent in their blends. Table 4 shows 33 samples that were analyzed
without preparation. As can be observed there is a good concor-
dance between the results obtained with DSC and those with the
PLS model. Sample 8, for instance, presented only one Tg value in
DSC and it was related to ABS. The PLS model predicted 1 and
99% for PC and ABS, respectively. Samples 37, 38 and 39 were iden-
tified as PP, PE and PS, respectively, when DSC was used. The PLS
models predicted inconsistent values (negative and higher than



Fig. 5. DSC thermograms obtained for the calibration model with different concentrations of PC and ABS (w/w%): 100/0 (a); 90/10 (b); 80/20 (c); 70/30 (d); 60/40 (e); 50/50
(f); 40/60 (g); 30/70 (h); 20/80 (i); 10/90 (j); and 0/100 (k).

Table 3
Added and found concentrations of PC and ABS in the PC/ABS blends (average ± standard deviation, n = 3).

Samples Mixtures
prepared

PC added
reference

PC predict
concentrations

Relative error (%) between added and predicted
concentrations (see Eq. (2) for details)aManufacturer labeled composition and sample description

Sample 1 (ABS black mobile phone) 1 20 24 ± 1.5 20
2 50 46 ± 3.2 �8.0

Sample 2 (ABS black computer casing) 1 60 63 ± 4.7 5.0
2 50 54 ± 3.7 8.0
3 70 69 ± 2.5 1.4

Sample 3 (ABS white computer casing) 1 40 43 ± 4.1 7.5
2 50 53 ± 2.9 6.0
3 60 62 ± 0.8 3.3

Sample 4 (ABS white computer monitor) 1 10 12 ± 1.5 20
Sample 5 (ABS white computer keyboards) 1 40 43 ± 2.5 7.5
Sample 6 (ABS white computer monitor) 1 80 77 ± 6.0 3.5

a Relative error for PC predicted concentration (LIBS and PLS).
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SEC) for PC and ABS. The thermograms obtained for the analyzed
samples can be seen in the supplementary material.
4. Conclusion

The results presented in this study clearly demonstrate the
capability of LIBS combined with PLS as a fast and quasi-non-
destructive tool for determining the PC and ABS content in their
blends originating from plastic scraps of e-waste and other
sources. In addition, LIBS can supply relevant information on the
metallic composition in these samples with analytical frequency
of 20 samples per hour. An example of this is the investigation of
species related to flame retardants, such as Mg, Al, and Sb, pig-
ments or additives. With the information provided in this study a



Table 4
Predict concentrations (%) of PC and ABS in the PC/ABS blends by PLS models (average ± standard deviation, n = 3) and conclusion after DSC analyses.

Samples Reference information
obtained after

PC predict
concentrations (%)

ABS predict
concentrations (%)

Manufacturer labeled composition and sample description DSC analysis

Sample 7 (PC/ABS blend white computer keyboards) PC/ABS 47 ± 2.1 53 ± 2.1
Sample 8 (PC/ABS blend black notebook casing) ABS 1.0 ± 12 99 ± 12
Sample 9 (PC/ABS blend black notebook casing) ABS 5.0 ± 3.0 95 ± 3.0
Sample 10 (PC/ABS blend black notebook casing) PC/ABS 63 ± 2.0 37 ± 2.0
Sample 11 (PC/ABS blend black notebook casing) ABS 4.0 ± 1.8 96 ± 1.8
Sample 12 (PC/ABS blend black notebook casing) ABS 6.0 ± 2.1 94 ± 2.1
Sample 13 (PC/ABS blend black computer screen) PC/ABS 60 ± 0.8 40 ± 0.8
Sample 14 (PC/ABS blend gray mobile phone) ABS 0.0 ± 0.8 100 ± 0.8
Sample 15 (PC/ABS blend gray calculator casing) PC/ABS 25 ± 5.2 76 ± 5.2
Sample 16 (PC/ABS blend white mobile phone) PC 99 ± 1.9 1.0 ± 1.9
Sample 17 (PC/ABS blend black computer screen) PC/ABS 47 ± 1.5 52 ± 1.5
Sample 18 (PC/ABS blend gray computer keyboards) PC/ABS 46 ± 1.5 54 ± 1.5
Sample 19 (PC/ABS blend black computer casing) ABS 0.0 ± 5.0 100 ± 5.0
Sample 20 (PC/ABS blend black TV screen) PC/ABS 73 ± 5.8 27 ± 5.8
Sample 21 (PC/ABS blend black calculator casing) PC/ABS 36 ± 3.0 64 ± 3.0
Sample 22 (PC/ABS blend white computer keyboards) PC/ABS 77 ± 4.3 63 ± 4.3
Sample 23 (PC/ABS blend white computer keyboards) PC/ABS 31 ± 4.7 69 ± 4.7
Sample 24 (PC/ABS blend black computer keyboards) PC/ABS 47 ± 1.5 53 ± 1.5
Sample 25 (PC/ABS blend black TV screen) PC/ABS 71 ± 2.4 29 ± 2.4
Sample 26 (PC/ABS blend black computer screen) PC/ABS 76 ± 1.4 24 ± 1.4
Sample 27 (PC/ABS blend white computer keyboards) PC/ABS 39 ± 2.8 61 ± 2.8
Sample 28 (PC/ABS blend black calculator casing) PC/ABS 49 ± 4.3 51 ± 4.3
Sample 29 (PC/ABS blend gray calculator casing) PC/ABS 18 ± 1.9 82 ± 1.9
Sample 30 (PC/ABS blend blue mobile phone) PC 100 ± 1.4 0.0 ± 1.4
Sample 31 (PC/ABS blend black calculator casing) PC/ABS 41 ± 1.5 59 ± 1.5
Sample 32 (PC/ABS blend black TV screen) PC/ABS 70 ± 2.4 30 ± 2.4
Sample 33 (PC/ABS blend white computer keyboards) PC/ABS 45 ± 6.5 55 ± 6.5
Sample 34 (PC/ABS blend black notebook casing) PC/ABS 12 ± 1.9 88 ± 1.9
Sample 35 (PC/ABS gray notebook casing) PC/ABS 42 ± 5.0 58 ± 5.0
Sample 36 (PC/ABS blend black computer screen) PC/ABS 30 ± 5.2 70 ± 5.2
Sample 37 PP �65 165
Sample 38 PE �71 171
Sample 39 PS �19 119

PP, Polypropylene; PE, polyethylene; PS, polystyrene.
All DSC thermograms are presented in supplementary material.
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LIBS system can be adapted in a conveyor belt providing a faster
technical plastic identification or quantification. In addition, porta-
ble system can be used in fast identification.
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