PAPER

Direct evidence of traps controlling the carriers transport in SnO$_2$ nanobelts

To cite this article: Olivia M. Berengue and Adenilson J. Chiquito 2017 J. Semicond. 38 122001

View the article online for updates and enhancements.
Direct evidence of traps controlling the carriers transport in SnO₂ nanobelts

Olivia M. Berengue¹,† and Adenilson J. Chiquito²

¹LCCTnano, Departamento de Física e Química - Universidade Estadual Paulista (Unesp), Faculdade de Engenharia de Guaratinguetá, Câmpus Guaratinguetá, São Paulo, Brasil
²NanO LaB - Departamento de Física, Universidade Federal de São Carlos, CEP 13565-905, CP 676, São Carlos, São Paulo, Brasil

Abstract: This work reports on direct evidence of localized states in undoped SnO₂ nanobelts. Effects of disorder and electron localization were observed in Schottky barrier dependence on the temperature and in thermally stimulated currents. A transition from thermal activation to hopping transport mechanisms was also observed. The energy levels found by thermally stimulated current experiments were in close agreement with transport data confirming the role of localization in determining the properties of devices.

Key words: trap; transport; SnO₂
DOI: 10.1088/1674-4926/38/12/122001 EEACC: 2520

1. Introduction

Quasi 1D metal oxide nanostructures have attracted considerable interest in recent years for fundamental studies and also for potential applications. In particular, they present properties which range from metals to semiconductors and insulators. One of the most prominent applications of these materials is the gas sensing devices[1–5]. The large surface-to-volume ratio inherent in one-dimensional nanostructures, provides the basis for superior sensor function by the oxide devices. On the other hand, it is well known that the performance of these devices is strongly correlated to their structural and electronic properties and to the presence of defects that limit the long-term reliability tolerance of electronic materials and devices. The understanding and the eventual control of these deleterious effects is of great relevance in view of device applications. SnO₂ is an intrinsic n-type semiconductor (mostly induced by oxygen vacancies) usually found in a rutile structure[6]. The coexistence of low resistivity and optical transparency is a characteristic feature of this class of materials but the electrical conductivity is unstable due to the reaction of oxygen vacancies in the SnO₂ and the environment atmosphere. In fact, this feature makes SnO₂ an excellent material for gas sensing devices either as thin films or as nanowires and nanobelts[7].

The physical principles underlying the detecting (gas and light) properties of semiconducting metal oxides have been explained elsewhere[8]; due to the affinity of O₂ molecules and the metal oxide nanostructures the molecules can be adsorbed on the surface of the nanowire, reacting with nearby electrons and thus, reducing the density of free electrons. In this way, the conductivity of the structures is reduced. By applying light (in the ultra-violet range), the original conductance is recovered: electron-hole pairs are formed and the holes recombine with the O₂⁻ bringing the structure to the original state. The actual sensor/device technologies consider that the transport in nanowires is dominated by a diffusive regime in which the undepleted region (far away from interfaces) responds in the ohmic regime. However, the conductivity in these one-dimensional devices is decisively affected by surface states and external excitations such as light and the surrounding environment. The surface disorder produced during the synthesis randomizes the electronic potential near the surface and then electrons are subjected to localization. This disorder can be described by surface states which affect all electrical properties of metal-nanowire devices. The fact is that any electron subjected to a random potential is not able to move through the system if either potential fluctuations exceed a critical value or the electron energy is lower than the characteristic value of the potential fluctuations. One of the common consequences of the localization is the hopping transport mechanism found in nanowire devices[9]. This work reports on direct evidence of localized states in undoped SnO₂ nanobelts synthesized from vapor-solid mechanism. From current-voltage measurements in back-to-back Schottky diodes we found a temperature dependence of the barrier height. This is a sign of charge localization at the metal-semiconductor interfaces and in regions nearby. Also, hopping transport was identified in a broad range of temperatures (low temperatures) while Arrhenius excitation was observed in high temperatures. The strength of electron's localization was studied by thermally stimulated current measurements (TSC). This method is broadly used for determining trapping parameters in semiconductors[10]. We found two energy levels which are in agreement with the hopping and activation mechanisms observation.

2. Experimental

Tin oxide nanobelts were synthesized in a conventional horizontal tube furnace (Lindberg Blue M) where it was inserted a ceramic alumina tube loaded with a powder mixture of
The as-grown materials were characterized by X-ray diffraction (Shimadzu, XRD 6100, 40 kV, 30 mA, Cu Kα radiation; all measurements were performed by using aluminium sample holders) and scanning electron microscopy (SEM, Jeol JSM6510) and the results can be seen in Figs. 1(a) and 1(b), respectively. The XRD data presented in panel (a) from the as-grown material show rutile-like peaks (PDF 41-1445) expected for the tetragonal SnO₂ structure.

All diffraction peaks were indexed as the tetragonal structure of SnO₂ within the P42/mmm spatial group (JCPDS card number 41-1445) and no additional phase peak was observed. The intensity ratio between reflections [110] and [101], \(I_{(110)}/I_{(101)} = 0.96 \) provides an indication of a preferential orientation growth, when compared with the standard data \((I_{(110)}/I_{(101)}) \). The difference is related to the large aspect ratio of the morphology of those samples.

Fig. 1(b) shows an SEM image of the synthesized samples. We found belts with lateral sizes ranging from 50 to 400 nm and lengths of tens of micrometers and also wires with sizes ranging from 30 to 300 nm and lengths of tens of micrometers. Also, in the inset there is a large magnification image showing the cross-section of the nanobelts in detail.

The production of the one-nanobelt-based devices started with the deposition of the SnO₂ samples onto the SiO₂ (500 nm thick) substrates before the definition of the metallic patterns: 500 nm thick titanium for Schottky devices and 80 nm thick eutectic alloy of Au/Ni for ohmic contacts. The metallic patterns were defined on nanobelts by standard photolithography techniques and in such a way that after the lift-off process only one nanobelt is linked by two metallic contacts. After this process, devices were inserted in adequate sample holders in order to perform electrical measurements. For TSC measurements, we used the following procedure: unbiased samples were cold down at 8 K in a closed cycle helium cryostat (Janis Research, CCS 400 H) at pressures below \(10^{-6} \) mbar; at the temperature minimum, samples were irradiated with the ultra-violet light and the temperature was increased at a constant rate (4 K/min) recording the thermally generated currents. Our system was able to determine currents lower than \(10^{-15} \) A. Thermally stimulated currents were monitored using a Keithley 6517B electrometer; the ultra-violet light was produced by a mercury lamp with 20 W of nominal power.

3. Results and discussion

Current-voltage curves are displayed in Fig. 2(a) for a single nanobelt device at different temperatures. Although the metal used for the two contacts is the same, the electrical characteristics are clearly distinct (asymmetry). This is a consequence of different Schottky barriers at each interface and a first evidence of the effects caused by potential fluctuations due to disorder. This disorder, directly contributes to the whole electron transport process in the samples. Using the back-to-back model in order to fit these current–voltage curves, we were able to find the Schottky barriers at both interfaces [Fig. 2(b)]. These Schottky barrier values are very different from those found in literature, \(\phi_B = 0.4–0.42 \) eV[11, 12] and they should be related to the influence of an interface layer where charges are localized. Under the growth conditions some disorder is expected to appear at the nanobelt’s surface. Therefore it is reasonable to assume that the irregularities on the surface should induce some inhomogeneity of the Schottky barrier height. This inhomogeneity, in turn, implies a temperature dependence of the Schottky barrier due to the different occupation of the energy levels at the interface under the Schottky barrier. Then an apparent distribution of Schottky barriers is seen in a typical measurement: different levels are activated at distinct temperatures as observed in Fig. 2(b).

For a barrier distribution, \(\phi_B \) can be obtained from[13]

\[
\phi_B = \phi_{B0} + \frac{\sigma^2}{2k_B T},
\]

(a) XRD data for three different as-grown samples showing the rutile-like peaks (PDF 41-1445) expected for the tetragonal SnO₂ structure. Panel (b) shows an SEM image of the as-synthesized nanostructures. We found belts with lateral sizes ranging from 50 to 400 nm and lengths of tens of micrometers and also wires with sizes ranging from 30 to 300 nm and lengths of tens of micrometers. Also, in the inset there is a large magnification image showing the cross-section of the nanobelts in detail.

SnO₂ (Sigma Aldrich, purity > 99.99%) and carbon black (Union Carbide, purity > 99.99%) mixed in a homemade balls mill. Previously to the heating process, the tube was purged with a 200 scm nitrogen gas flux in order to avoid undesirable presence of oxygen before the powder reaches the ideal temperature for the synthesis (1200 °C). Afterwards, the flow rate was adjusted to 60 scm. The furnace was rapidly heated to 450 °C (heating rate of 10 °C/min) and oxygen traces were inserted in order to both drive the source material to the coldest region of the tube and to avoid non-stoichiometric SnO₂ phases[10].

For a barrier distribution, \(\phi_B \) can be obtained from[13]
The effects of the disorder can also be identified in transport measurements (Fig. 3). The resistivity of SnO$_2$ devices decreased as the temperature increased as should be expected for semiconductors, panel (a). Panels (b) and (c) show regions where variable range-hopping mechanism and Arrhenius-type mechanisms were found, respectively.

where ϕ_{B0} is the correct Schottky barrier, σ^2 is the standard deviation of the barriers distribution and the other symbols have their usual meanings. The lines in Fig. 2(b) represent the fitting of Eq. (1) to the experimental data: we found $\phi_{B0} = 0.42$ eV and $\phi_{B0} = 0.45$ eV in close agreement with literature data\cite{11}. The consideration of the contributions from disorder and localization of charges are very important in order to understand the behavior of the devices. This dependence of the Schottky barriers on the temperature is an indirect evidence of the disorder effects.

The presence of localized states can be extracted out directly from thermally stimulated current measurements which is a broadly used method for determining trapping parameters in semiconductors. In typical TSC measurement, samples are irradiated with UV light and cooled to 8 K, thus stimulating carriers trapped in deep levels lying in the forbidden energy gap\cite{16}. If there is an electron trapping centre with energy above the normal dark Fermi level, then trapped carriers are irradiated with UV light and cooled to 8 K, thus stimulating carriers trapped in deep levels lying in the forbidden energy gap\cite{16}. If there is an electron trapping centre with energy above the normal dark Fermi level, then trapped carriers are

$$\rho(T) = \rho_0 \exp \left(\frac{T_0}{T} \right)^{\frac{1}{4}},$$ \hspace{1cm} (2)$$

where $T_0 = \frac{18a_0^3}{k_B N(E_F)}$, $N(E_F)$ is the density of states at the Fermi level and a_1 the localization length characterizing the spatial extension of wave functions. The conduction takes place by hopping in the vicinity (around k_BT) of the Fermi level where the density of states remains almost a constant. This condition is fulfilled when the temperature is sufficiently small or when the energy states are uniformly distributed.

The agreement between theoretical and experimental curves confirms that the hopping process governs the transport from 10 to 130 K. In fact fitting of Eq. (2) to the experimental data provides $N(E_F) = 6.8 \times 10^{20}$ eV$^{-1}$cm$^{-3}$ when considering that $\alpha = \left(a_0 \right)^{-1}$ where a_0 is the Bohr radius of SnO$_2$ ($m^* = 0.24m_0$). The average hopping energy was calculated to be 12 ± 8 meV at 130 K (temperature in which thermal activation starts to be significant).

The presence of localized states can be extracted out directly from thermally stimulated current measurements which is a broadly used method for determining trapping parameters in semiconductors. In typical TSC measurement, samples are irradiated with UV light and cooled to 8 K, thus stimulating carriers trapped in deep levels lying in the forbidden energy gap\cite{16}. If there is an electron trapping centre with energy above the normal dark Fermi level, then trapped carriers are trapped.
The agreement between theoretical and experimental points is quite remarkable in the whole range of temperatures (10 K < T < 300 K). This result shows the presence of levels at 16 ± 5 meV and 51 ± 8 meV, confirming the presence of localization and its relationship with the observed transport features: these energies are close to those found from transport measurements, indicating that the disorder randomizes the electron potential leading to localization. The hopping energy at low temperatures is close to the lower energy found in transport data and also confirm the presence of localization in SnO2 samples.

4. Conclusion

Single nanobelt-based devices with Ti electrodes were constructed in order to investigate defects and disorder's influence on electrical properties. Schottky contact properties were studied using a model which considers a back-to-back Schottky barrier and we found a dependence of the barrier height on the temperature indicating the presence of localized states. Transport data reveals two distinct transport mechanisms present in the samples: VRH hopping and Arrhenius-type were detected in different temperature ranges. Also, the activation energy was extracted out from the Arrhenius data to be 53 ± 10 meV as well as the average hopping energy was calculated to be 12 ± 8 meV. Thermally stimulated measurements show the presence of two energy levels, 16 ± 5 meV and 51 ± 8 meV which present good agreement with the transport data and also confirm the presence of localization in SnO2 samples.

Acknowledgments

We thank professor Alexandre J. C. Lanfredi for FEG-SEM image and the Brazilian research funding agencies (Grant 13/19692-0, 15/21816-4 São Paulo Research Foundation (FAPESP)) and CNPq (477716/2013-0) for the financial support of this work.

References

