
RESEARCH AND EDUCATION
Supported by
(CAPES; gran
yttrium disks
aPostdoctora
Brazil; and R
bProfessor, D
cProfessor, D
dProfessor, D
eProfessor, S
fProfessor, Sc

THE JOURNA
Effect of titanium and zirconia dental implant abutments on a
cultivable polymicrobial saliva community
Erica D. de Avila, DDS, PhD,a Carlos Eduardo Vergani, DDS, MSc, PhD,b

Francisco A. Mollo Junior, DDS, MSc, PhD,c Miguel Jafelicci Junior, MSc, PhD,d

Wenyuan Shi, PhD,e and Renate Lux, PhDf
ABSTRACT
Statement of problem. Peri-implantitis is considered the most important biological complication
responsible for late implant failure. The physical chemical properties intrinsic to each material can
affect the first step to biofilm development and is an important precursor to the adaptive behavior
of pathogenic bacteria species.

Purpose. The purpose of this in vitro study was to evaluate the effect of 2 commercially available
implant abutment materials on the adhesion phase and biofilm formation.

Material and methods. Disks (8 mm in diameter, 2 mm thick) of machined pure titanium (Ti) and
yttrium-stabilized zirconia (ZrO2) materials were used to mimic implant abutments. The physical
chemical surface properties were investigated using different approaches. Initial adherent
bacteria and biofilm formation were evaluated after 16 and 48 hours by incubating the disks in
a rich medium containing representative saliva-derived oral microbial community. Unpaired t
test, 2 tailed, was used to compare the groups.

Results. Ti presented lower hydrophobicity and surface free energy values than the ZrO2, and
6.1-fold fewer bacteria adhered to the Ti. After 48 hours, detailed quantitative analysis showed that
biofilm biomass and biofilm density were lower on the Ti disks than on ZrO2. The quantity of
phylotypes on the Ti and ZrO2 surfaces was relatively similar during the attachment and early
biofilm formation periods.

Conclusions. Although no difference in the bacteria profile was observed between both materials
independent of the time point, the highest level of colonization was on ZrO2. (J Prosthet Dent
2017;118:481-487)
The biologic complications of
peri-implantitis may present a
problem during dental implant
therapy.1-3 Peri-implantitis is
associated with about 17%
of installed implants after 10 to
16 years of follow-up.4 In a
recent review, Mombelli et al5

revealed that the prevalence of
peri-implantitis seems to be
20% between 5 and 10 years
after implantation. Although
peri-implant disease is immu-
nologically stimulated by the
host, the inflammatory process
is bacteria dependent. A similar
pattern of colonization is pre-
sent in periodontal and peri-
implant disease,6-10 although
with some differences in pa-
tientswith partial and complete
edentulism.11 This disease

pattern has direct clinical implications, especially with
regard to choosing implant surface materials.

Surface attachment is the first step to biofilm devel-
opment and is an important precursor to the adaptive
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Clinical Implications
Zirconia promoted a significant microbial saliva
community growth compared with titanium.
Because esthetic implications are considered an
indicator of success and implant abutment surfaces
are in intimate contact with the peri-implant tissue,
the findings of this study could offer a starting
point for clinical studies with patients who are
periodontally compromised.
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considered the key properties of dental implant surfaces
for biofilm formation. The chemical composition and
surface characteristics of the different substrates17-25 used
for abutment components may directly affect microor-
ganism adhesion and oral biofilm maturity.20-28

The abutment components seem to be of decisive
importance for biofilm formation because of their
supragingival and subgingival location. Thus, materials
used to manufacture implant abutments should inhibit
bacteria colonization on their surface. However, the au-
thors are unaware of any antimicrobial coating of implant
abutment surfaces, and therefore, uncoated titanium (Ti)
and zirconia (ZrO2) are the most common commercially
available dental implant abutment materials.

While several investigations have demonstrated dif-
ferences in terms of biofilm formation on Ti and ZrO2

materials,28-33 others have reported no differences in
biofilm formation between the material surfaces.34,35

Therefore, the effect on the adhesion phase and biofilm
formation using human polymicrobial oral communities
of 2 different materials was evaluated. The hypothesis
was that different material surfaces interfere with the
quality and quantity of adhered bacteria, the biofilm
formed, and the bacteria profile.

MATERIAL AND METHODS

Machined pure titanium (grade 2) and yttrium-stabilized
zirconia disks (8 mm in diameter, 2 mm thick) (Conexão
Sistemas de Próteses Ltda) were used in this study. The
surface roughness of all disks was determined with a
portable roughness analyzer (Surftest SJ-401; Mitutoyo
Corp).19,20 For each material, each side was measured
twice, the mean values were calculated, and the
morphology of the disks was examined with a scanning
electron microscope (SEM) (JSM-JEOL 7500F; JEOL Ltd).
The specimens were directly mounted on aluminum
stubs, and the SEM images were obtained in high reso-
lution with the microscope working between 2 and 15
kV. Three disks of each material and 5 areas were
analyzed. The surface free energy (SFE) was determined
by the contact angle formed between different wet
agents and materials to analyze the physicochemical
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characteristics of Ti and ZrO2 surfaces. The contact angles
for liquid drops (aqueous phase with varying pH, water,
ethylene glycol, polyethylene glycol, and diiodomethane)
were measured by using the sessile drop technique, as
described previously.19,20 Five disks of each material were
used, and the procedure was repeated 3 times to assess
the reproducibility of the experiment. The average of
each surface and each wetting agent was entered
into specialized drop-shaped analysis software (SCA-
Software/OCA-20; DataPhysics Instruments GmbH),
and the SFE was calculated from the concept of polar and
dispersion components as described by Owens and
Wendt.36 Before measurement, each disk was cleaned
with acetone to remove any organic material, followed by
a 15-minute rinse with ultrapure water in ultrasonic
baths. In sequence, the disks were sterilized with gamma
irradiation at a dose of 25 kGy from an artificial cobalt 60
source (ISO-11137-1:2006, Sterilization of health care
productsdradiationdpart 1: requirements for develop-
ment, validation and routine control of a sterilization
process for medical devices; this standard was last
reviewed and confirmed in 2016).

To simulate clinical conditions and increase the rele-
vance of this in vitro study, a cultivable microbial saliva
community representative of the complex oral micro-
biome was used as an in vitro model biofilm.37,38 The
bacterial community was grown overnight anaerobically
(85% N2, 10% H2, and 5% CO2)38,39 at 37�C in a modi-
fied rich medium (SHI-FSMS) developed to support the
high number of oral bacteria from human saliva samples
(50% SHI medium, 25% filtered saliva [filter pore size
0.22 mm], 0.5% mannose, 0.5% sucrose).39 Initially the
optical density at 600 nm was adjusted to 0.1 in fresh
medium to decrease bacterial concentration, and then
800 mL of the oral microbial community was placed onto
disks in a sterilized 24-well polystyrene culture plate
(Corning Costar cell culture plates; Fisher Scientific). As
positive control, the oral microbial suspension was
cultured directly on the polystyrene surface of the plate.
Additionally, sterile medium was incubated with and
without Ti and ZrO2 disks to act as a negative control.
The adhesion phase and biofilm formation were evalu-
ated after 16 and 48 hours’ incubation, respectively. After
each time point, the disks were transferred to a new 12-
well polystyrene culture plate and rinsed 3 times with 1
mL sterilized phosphate-buffered saline (PBS) before
further processing.

The surface property described above was examined
as to whether it had any influence on the ability of a
complex oral community to adhere and develop biofilms
on 2 abutment surfaces. The quantity and quality of
bacteria adhered to Ti and ZrO2 materials were evaluated
after 16 and 48 hours’ incubation using different ap-
proaches. The disks were placed in a 24-well plate with
1 mL of SHI medium, and the surface was scraped with a
Avila et al
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pipette tip to detach the biofilm. One milliliter of culture
was transferred to a 1.5 sterilized Eppendorf tube (tube 1).
Subsequently, tube 1was vortexed, and 100mL from tube 1
was transferred to a new tube containing 900 mL of SHI
medium (tube 2). The serial dilution procedure was
repeated until tube 8. Twenty-five microliters of each tube
was spread on fresh SHI medium agar and the plates kept
at 37�C under anaerobic conditions. The colonies were
counted after 3 days. The overall methodology applied
in this experiment followed the detailed sequence as
previously described.39

To determine the biomass accumulation on Ti and
ZrO2 disk surfaces, the PBS-washed disks were trans-
ferred to a new 24-well plate and incubated with 800 mL
of 0.5% crystal violet solution for 20 minutes. A similar
procedure was conducted for control wells (no disks).
After that, the disks were rinsed with PBS to remove
excess crystal violet and incubated with 800 mL of 95%
ethanol for 15 minutes. The ethanol solution was trans-
ferred into cuvettes (polystyrene spectrophotometer
cuvette; USA Scientific), and the optical density of the
specimens was determined for total biomass assessment
at 595 nm. Each data point represented 3 well experi-
ments, and 3 independently repeated tests were per-
formed to ensure reproducibility. To evaluate the viability
and density of the complex oral bacteria on both surfaces,
the disks were stained with a bacterial viability kit (LIVE/
DEAD BacLight; Invitrogen) according to the manufac-
turer’s instructions. The bacteria adhered, and the biofilm
formed was observed through ×10 dry and ×40 oil
immersion objectives from a confocal laser scanning
microscopy module (LSM 510 v4.2; Carl Zeiss Micro-
Imaging Co Ltd) using an excitation wavelength of 488
nm and a fluorescence emission range above 505 nm.

Next, confocal microscopy was used to optically slice
comparably thick specimens. The biofilm images were
obtained from 3 arbitrary positions and vertical and
horizontal optical sections with a set slice thickness at 1
mm generated Z series. Confocal images from each
disk were exported to a freeware program (ImageJ 1.48
for Macintosh v10.2; http://imagej.nih.gov/ij/download.
html) and converted into red, green, and blue. The area
occupied and the density of biomass by live bacteria
within each section was calculated by using the inte-
grated density of pixels. The analyses were performed in
duplicate with 2 repetitions.

Last, to evaluate the effect of both materials on the
bacteria profile, each surface was scraped with a sterile
pipette tip in a well containing 150 mL of PBS, and the
total genomic DNA solution was transferred to a 1.5 mL
Eppendorf tube for DNA extraction (MasterPure DNA
Purification Kit; Epicentre). The DNA amplification was
performed as described by de Avila et al.39 Denaturing
gradient gel electrophoresis (DGGE) of the polymerase
chain reaction (PCR) products was performed using the
Avila et al
DCode System (Bio-Rad Laboratories Inc) at 60 V and
58�C for 17 hours, according to the detailed experimental
steps previously published.39 A 45 mL aliquot of the PCR
product was loaded into each well, and electrophoresis
through 8% polyacrylamide gels was completed to
separate, identify, and purify nucleic acids.

In sequence, gel images were acquired with the Mo-
lecular Imager Gel Documentation system (Bio-Rad
Laboratories Inc). Two samples of each material were
used for this experiment, and the method was repeated 3
times for each time point. An overnight oral saliva
community culture (S) was used as a positive control. The
intense DGGE bands were excised, and 5 mL of the DNA
sample was used as a template for reamplification.
Briefly, reamplification was performed with the same
universal primers used for PCR amplification, and the
product was sent for sequencing using the universal
primer.37 The 16S DNA sequences were compared with
the GenBank sequences by using the BLAST program in
the Human Oral Microbiome Database (HOMD) to
identify the phenotypic from the oral bacteria.

The results were evaluated as means ±SD, except for
qualitative analysis using confocal microscopy. All statis-
tical analyseswere performed by statistical software (Prism
v5.0c; GraphPad Software Inc). The unpaired 2-tailed t test
was used to compare the Ti and ZrO2 disks (a=.05).
RESULTS

For Ti disks used in this study, the mean roughness
average (Ra) was 0.21 ±0.06 mm and for ZrO2 was 0.22
±0.03 mm. To complement the roughness analysis, the
morphology of Ti and ZrO2 materials was examined at
high (×1000) magnification. SEM revealed a rough
homogeneous surface for Ti and a smooth surface for
ZrO2. Ti surfaces showed a circular configuration of the
irregular plane, smooth, and rough surface areas
(Fig. 1A), whereas for ZrO2, a spherically shaped char-
acteristic was detected in granules (Fig. 1B).

According to Table 1, although both materials were
hydrophobic with contact angles higher than 50 degrees,
a significant difference was noted between them, with
ZrO2 presenting less wetting with water. Conversely, no
significant difference was noted between the contact
angle of diiodomethane and materials, revealing a similar
nonpolar characteristic of Ti and ZrO2. The variability of
the data collected for the contact angle of each liquid to
each material was evaluated by descriptive analysis. Low
SD values were assumed, and the final averages were
inserted into the software (SCA-Software/OCA-20) to
obtain the SFE values. ZrO2 specimens presented higher
surface tension (6.1 mJ/m2) than Ti (5.75 mJ/m2).

Colony-forming unit per milliliter disclosed a statis-
tically significant difference (P=.019) in the overall bac-
teria adhered, with 6.1-fold more colonies evident on the
THE JOURNAL OF PROSTHETIC DENTISTRY
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Figure 1. Scanning electron microscope images showing surface topography. A, Ti disk. B, ZrO2 disk. (Original magnification, ×1000.)

Table 1.Means ±SD of contact angle (q) of liquid for each specimen

Wetting Agent

Specimen

Ti ZrO2

Water 67.73 ±3.32 73.14 ±1.82

Ethylene 43.83 ±1.27 39.45 ±3.80

Polyethylene 25.90 ±3.46 23.39 ±1.06

Diiodomethane 24.09 ±1.82 24.77 ±1.56
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Figure 2. Effect of Ti and ZrO2 material surfaces on bacterial attachment
and biofilm formation evaluated after 16 and 48 hours’ incubation using
quantitative culture counts (in CFU); CFU/mL was significantly reduced
on Ti disks. Data shown as means ±SD (n=9). *,#P<.05. CFU, colony-
forming units.
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ZrO2 than Ti surfaces. Because the attached phase
showed fewer salivary bacteria adhered to Ti disks, this
outcome was evaluated to see whether it would persist
during the biofilm formation and growth process.
Colony-forming unit per milliliter also disclosed a sta-
tistically significant difference (P=.046) in overall biofilm
formed after 48 hours with 1.6-fold more bacteria
adhered on ZrO2 than on Ti surfaces (Fig. 2).

The confocal microscopy images of the surface
attached biomass confirmed that Ti disks accumulated
significantly fewer bacteria compared with their coun-
terparts (Fig. 3A, B). Further, the biofilm viability of both
materials was similar, as revealed by fluorescent stain.
The difference in biofilm formation between Ti and ZrO2

disks was also confirmed by confocal microscopy analysis
(Fig. 3C, D). The observation under confocal laser mi-
croscopy showed that the biofilm thickness on ZrO2 was
deeper than that of the Ti group (Fig. 3E, F). Quantitative
measurements from images acquired by confocal analysis
revealed that the density of adherent bacteria was 1.6-fold
higher on the ZrO2 than on the Ti disks (Fig. 4) after 16
hours and that this difference remained after 48 hours.

Consistent with confocal analysis, crystal violet
staining showed substantially higher biomass at both
time points, with 2.7-fold more bacteria adhered on ZrO2

than on Ti disks and 2.2-fold more biofilm developed on
ZrO2 than on Ti disks (Fig. 5). The next goal was to
observe whether the different abutment material surfaces
affected the biofilm bacterial community. DGGE analyses
demonstrated that the quantity of phylotypes on the Ti
and ZrO2 surfaces was relatively similar during the
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attachment and early biofilm formation periods (Fig. 6).
However, some differences on weakly and strongly
adherent biofilm bacteria were observed for both time
points. The intensity of bands 2 and 3 were highest
during the adhesion phase (16 hours of incubation).
The similarity of bacteria composition persisted after 48
hours, but the time affected the dominance of some
bacteria species. Bands 1, 5, and 6, identified as Fuso-
bacterium periodonticum, Neisseria subflava, and Allopre-
votella sp, respectively, became more intense on Ti and
ZrO2 after 48 hours, indicating that biofilm formation on
those materials is time dependent.

DISCUSSION

Studies have shown that individuals treated for peri-
odontitis may experience more implant failure, so a better
understanding of the interface between prosthetic
superstructure and implants is necessary. The authors
are unaware of previous studies analyzing a cultivable
Avila et al



Figure 3. Effect of Ti and ZrO2 material surfaces on bacterial attachment and biofilm formation evaluated after 16 and 48 hours’ incubation using
confocal microscopy. (Original magnification, ×10.) A, Ti disks after 16 hours’ incubation. B, ZrO2 disks after 16 hours’ incubation. C, Ti disks surfaces
after 48 hours’ incubation. D, ZrO2 disks after 48 hours’ incubation. E, Images in Z stacks revealed biofilm thickness formed on Ti disk surfaces. F, Images
in Z stacks revealed biofilm thickness formed ZrO2 disk surfaces.
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polymicrobial community representative of the oral cav-
ity38 on 2 commercial types of implant abutments. The
data led to acceptance of one of the hypotheses: that
more biofilm accumulated on ZrO2 than on Ti materials.
However, the other hypothesis was rejected because the
type of material did not affect the bacterial profile.

The surface properties of materials have a marked
influence on the early phases of biofilm development in
that smooth surfaces and those with the low SFE
feature may have less bacterial adherence than rough
Avila et al
substrates.21,23 For the purpose of this study, a standard
roughness was chosen for the experimental Ti and ZrO2

abutments that approached the optimal roughness as
previously described10,18 for permucosal implant abut-
ments. The goal in this study was to eliminate the
roughness variable, keep the homogeneity of groups, and
focus on the effect of abutment materials on bacterial
attachment and biofilm formation.

Differences in bacterial colonization and biofilm for-
mation probably resulted from differences in the chemical
THE JOURNAL OF PROSTHETIC DENTISTRY
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Figure 4. Integrated density significantly reduced on Ti disks (brown bar,
Ti). Data shown as means ±SD. *,#P<.05 indicates statistically significant
difference between Ti and ZrO2 disks.
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Figure 5. Effect of Ti and ZrO2 material surfaces on biomass of bacterial
attachment and biofilm formed evaluated after 16 and 48 hours’ incu-
bation using crystal violet staining. Statistically significantly higher
biomass of bacterial attachment on ZrO2 (gray bar, ZrO2) than Ti disks
(brown bar, Ti). Data are shown as means ±SD (n=9). *,#P<.05 indicates
statistically significant difference between Ti and ZrO2 disks.

Figure 6. Denaturing gradient gel electrophoresis (DGGE) analysis of oral
microbial communities formed on Ti and ZrO2 disk surfaces after 16 and
48 hours’ incubation. Bands indicated by arrows were excised and
DNA sequenced. Microbial identities: (1) Fusobacterium periodonticum,
(2) Streptococcus sp, (3) Gemella sanguinis, (4) Veillonella parvula,
(5) Neisseria subflava, and (6) Alloprevotella sp.
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composition and consequently differences in SFE (elec-
trical conductivity). On the basis of the analysis of the total
number of bacteria adhered in the initial culture stage and
in a mature biofilm to different surfaces, more bacterial
accumulation was observed on the ZrO2 surfaces, the
most hydrophobic material with the highest value of
surface tension. The positive correlation between SFE and
bacterial adhesion depended on the similar chemical
nature of both surfaces and the prokaryotic cells.13,16

Fewer bacteria (6.1-fold) adhered to Ti than to ZrO2.
This reduction was also reflected by reduced biomass and
biofilm density. The reduction in biofilm formation was
sustained most notably after 48 hours. These data are in
contrast with most studies that reported no difference
between biofilm formations on these materials, or fewer
bacteria adhered to ZrO2 than the Ti substrate.33,35

However, the chemical and physical properties of sur-
faces (surface wettability of materials) combined with one
or a few species of bacteria do not reflect the actual effect
of the material in the oral cavity.25,35 A previous inves-
tigation22 also found no difference in biofilm formation
between Ti and ZrO2 substrates for implant abutment
fabrication. However, the authors kept the specimens
immersed in saliva for 2 hours before the biofilm devel-
opment, which may have affected the SFE, making it
similar between the materials.22 Consequently, the in-
teractions between the hydrophobic and hydrophilic re-
gions of the outer cell wall24 and the material surface may
also have been similar.

An intriguing observation in this study was the
number of microorganisms determined in multispecies
biofilm exposing the specimens to a suspension of
Streptococcus gordonii, Streptococcus mutans, Actinomyces
naeslundii, and Candida albicans.22 Because bacteria
express a wide variety of complex molecules that can
contribute to the overall tendencies of microorganisms
interacting with other cells, the selected microorganism
THE JOURNAL OF PROSTHETIC DENTISTRY
species can create a final energy and change the inter-
action to their environment.15 Because interaction among
microorganisms is fundamental for initial colonization
and subsequent biofilm formation on dental surfaces, the
limitation of the in vitro biofilm models described in the
literature so far may explain the inconsistent results.

Overall, comparable microorganisms are found
around newly placed implants and the remaining
dentition. This can also include periodontopathogenic
species, which might even be considered a risk for future
peri-implant infections. Because Ti accumulated fewer
bacteria than ZrO2 onto the surface, whether material
features would also affect the profile of bacteria coloni-
zation was investigated. No differences were observed in
bacterial composition in the attachment phase. The effect
Avila et al
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of Ti and ZrO2 beyond the early stages continued over
time. After 48 hours of incubation, the bacterial profile,
measured by the intensity of the bands, showed no dif-
ferences between materials, but the intensity was
different compared with the first time point. Ti and ZrO2

are considered highly hydrophobic materials because of
their chemical composition; the low polarity of their
surfaces will attract molecules with the same chemical
composition. These concepts may explain the similarity
of the bacterial profile at both time points.

CONCLUSIONS

On the basis of the results of this in vitro study, the
following conclusion was drawn:

The initial attachment phase and biofilm formation
are affected by substrate type, with ZrO2 accumulating
significantly more bacteria and biofilm on the material
surfaces than Ti.
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