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1. Introduction

Vanadium pentoxide (V2O5), in orthorhombic structure, has 
been widely used in a variety of scientific and technological 
applications due to its highly anisotropic electrical and optical 
properties making it a promising compound for applications 
such as high-capacity lithium batteries [1, 2], chemical sen-
sors [3–5] and solar cells [3, 4]. The most exploited morpholo-
gies are polycrystals [6], nanofibers [5, 7], nanorods [8, 9], 
nanotubes [10, 11] and thin films [12–15].

In addition to many applications, oxides have also been 
widely studied due to their magnetic properties. In particular, 
a class of oxides with magnetic properties associated with 
the presence of structural defects caused by the insertion of 
dopants in the lattice or due to the thermal treatment used after 

the synthesis procedure, resulting in an increase or decrease 
of oxygen vacancies concentration in the samples studied. 
Among these oxides we can highlight Co and Ni doped ZnO 
[16, 17], Co and Mn doped TiO2 [18–20], Fe doped SnO2 [21, 
22], In2O3 [23] and HfO2 [24, 25]. The effects of oxygen-
vacancies on the magnetic properties were observed particu-
larly in CeO2 [26].

The literature reports that orthorhombic V2O5 has a typical 
lamellar structure [4, 27, 28] in which vanadium atoms have 
no unpaired electrons in their last shell (3d0) [29]. In other 
words, it was observed that V2O5 does not possess intrinsic 
magnetic moments and presents itself as a diamagnetic mate-
rial [29]. However, in a study using spin density functional 
theory [30] it was calculated that changes in the atomic and 
the electronic structure, as well as in the magnetic properties 
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Abstract
Optical and magnetic properties of V2O5 polycrystals were investigated through 
photoluminescence (PL) and magnetization measurements. The PL spectra comprise two main 
bands attributed to oxygen vacancies and to band-edge-related transitions. The magnetization 
measurements showed a predominant paramagnetic behavior in the temperature range studied 
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antiferromagnetic phase in V2O5 was predicted in the literature although this result had not 
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of V2O5 could be induced by oxygen deficiency in the struc-
ture, represented by V2O5−x by the authors. This analysis sug-
gests that the higher the vacancy density, the greater the local 
distortion around vanadium atoms near the oxygen vacancies. 
The same authors also predict a ferromagnetic state present 
in the system for x  <  ~0.13 and 0.19  <  x  <  ~0.45, already 
reported in literature [31, 32], and an antiferromagnetic state 
(0.45  ⩽  x  ⩽  0.5), which was the object of study in this work. 
This behavior was never observed experimentally and is going 
to be discussed in this paper.

The aim of our work is to present the correlation between 
optical and magnetic properties observed in V2O5 polycrys-
tals prepared by the Pechini method [33]. In our experi-
mental study we observed that magnetic susceptibility shows 
a paramagnetic phase accompanied by a peak around 80 K 
characteristic of an antiferromagnetic transition. The photolu-
minescence spectra presented a band emission at lower energy 
associated with structural defects and another related to the 
band-edge emission. Furthermore, the optical band gap at 300 
K was also estimated by diffuse reflectance spectroscopy as 
being 2.2 eV.

2. Experimental details

The V2O5 powder sample was synthesized by the Pechini 
method [33] as follows. NH4VO3 (M-P A Merck) was added 
to ethylene glycol (EG—P A Mallinckrodt) and the system 
was kept under constant stirring at 70 °C until complete dis-
solution. Afterwards citric acid (CA—P A Synth) was added 
to the solution, maintaining both temperature and stirring, 
until the compounds were completely dissolved. The mate-
rial obtained was then polymerized at 110 °C (1 h), and cal-
cined in two steps: one at 300 °C (2 h) and another at 550 °C 
(4 h). After the calcination process the powder obtained was 
macerated.

The morphology and the microstructure of the V2O5 
powder was investigated using scanning electron microscopy 
(FEG-SEM) and x-ray diffraction (XRD) with Cu Kα radia-
tion at a wavelength of 1.54 Å. The 2θ scan was performed 
from 10° to 110° with 0.02° increments and the XRD data 
were analyzed by the Rietveld refinement method [34] using 
GSA/EXPGUI [35, 36] software. Raman spectroscopy was 
used as a complementary structural determination. The meas-
urement was accomplished using a triple grating spectrom-
eter equipped with microscope facilities. The experimental 
configurations were adjusted to provide a spectral resolution 
of 1.5 cm−1. The line 488 nm of an argon laser was used as 
an excitation source with controlled power in order to avoid 
heating effects.

The sample was also characterized by diffuse reflectance 
spectroscopy (DRS) for band gap energy determination. 
Additional optical properties were investigated using pho-
toluminescence spectroscopy technique as a function of the 
temperature in the range 15–300 K. For optical excitation, 
we employed the 325 nm line from a He–Cd laser. The V2O5 
optical emission was monitored by an Ocean Optics spec-
trometer model (USB4000-UV–Vis / 200 μm slit) in the range 
350–1000 nm.

Magnetization as a function of applied magnetic field, up 
to 70 kOe, and magnetic susceptibility as a function of tem-
perature (1.8–300 K) measurements, using zero field cooled 
(ZFC) and field cooled (FC) protocols were performed using a 
SQUID-VSM magnetometer (MPMS®3—Quantum Design).

3. Results and discussion

3.1. Structural and morphological properties

XRD measurements performed at room temperature charac-
terized the sample as being orthorhombic V2O5 (ICSD Code: 
60767), spatial group Pmmn. Presenting the following lattice 
parameters: a  =  11.514(0) Å, b  =  3.565(2) Å, c  =  4.374(7) 
Å, α  =  β  =  γ  =  90°. The Rietveld quality factors showed 
conformity between experimental data and the fitted curve as 
follows: RWP  =  0.106 and χ2  =  1.39. Figure 1 also confirms 
the good data fitting between the calculated profile (YCal) and 
the observed profile (YObs). In the inset presented in figure 1, 
the lamellar morphology expected for V2O5 is also confirmed 
by FEG-SEM images.

In order to rule out the possibility of the presence of a spu-
rious phase in the sample we performed a Raman spectros-
copy measurement at 300 K which is presented in figure 2. 
The peaks are typical of the orthorhombic structure of V2O5, 
belonging to spatial group Pmmn (D13

2h) [37]. The spec-
trum presents no peaks which can be related to other types 
of common vanadium oxide structures, such as VO2 or V2O3 
[38, 39].

3.2. Optical properties

Several methods have been developed and applied to derive 
band gap energy (Eg) values of semiconductors including 
optical absorption and DRS. In this work, we have used 
Kubelka–Munk theory [40, 41] into DRS data to determine 

Figure 1. Room temperature XRD pattern for V2O5 polycrystals. 
The black line indicates observed collected data (YObs), the red line 
refers to calculated data (YCalc) by the Rietveld refinement method 
and the green line shows the difference between observed and 
calculated data. The black bars correspond to Bragg peaks of V2O5 
orthorhombic phase.
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the Eg in a V2O5 sample at room temperature. This model 
holds when the diffuse reflection no longer allows one to sepa-
rate the contributions of the reflection, refraction and diffrac-
tion (i.e. scattering occurs). In the parabolic band-structure 
approximation, Eg and linear absorption coefficient α of a 
semiconductor are related through the equation (1) [42]:

( )α υ υ= −h C h Eg n
1 (1)

where hυ is the photon energy, C1 is a proportionality con-
stant, n could be 2, 3, 1/2 and 3/2 for indirect allowed, indi-
rect forbidden, direct allowed and direct forbidden transitions  
[43, 44], respectively. The n value for the specific transition 
can be determined by the best linear fit in the lower absorp-
tion region [10, 11]. In the case of materials that scatter in 
perfectly diffuse manner we can write [45]:

[ ( ) ] ( )υ = −∞F R h C c En g
1

2 (2)

( )∞F R  is directly related to K/S where S and K are the so-
called K–M [45] scattering and absorption coefficients, 
respectively. Therefore, obtaining ( )∞F R  from equation  (2) 

and plotting [ ( ) ]υ∞F R h n
1
 against   υh , the Eg of a powder 

sample can be extracted easily as shown in figure 3. For our 
sample, n equals 2, a typical value for an indirect band gap 
in accordance with theoretical band calculation [45] and with 
single crystal experimental data for V2O5 [46].

Our optical band gap estimative at room temperature for 
V2O5 was 2.2 eV, in agreement with results found by other 
authors [13, 14, 47, 48]. It should be noted that variations in 
the band gap energy may be related to the degree of nonstoi-
chiometry in V2O5 [49].

In order to study the PL properties of V2O5, the powder 
was compressed into a tablet with 5 mm diameter. The PL 
emission spectra were investigated as a function of the tem-
perature from 15 K up to 300 K. Figure 4 shows typical PL 
spectra for the V2O5 sample for different temperatures.

Two broad band emissions were observed at 15 K, a lower 
energy band centered at 1.76 eV (~700 nm) and a broader band 

at 2.4 eV (~515 nm). It was observed that the relative intensity 
of both bands is very sensitive to the temperature changes as 
illustrated in figure 4.

The V2O5 band gap was previously reported in the range 
2.15–2.65 eV due to indirect and direct gaps [50]. At 300 K 
our results show both emissions, one at 2.2 eV associated to 
indirect band gap, as observed in DRS experiments, and a 
higher energy peak that can be attributed to the direct band 
gap [50]. When the temperature increases from 15 to 300 
K, this band has a red shift as expected for band gap transi-
tions due to semiconductors [51]. Therefore we attribute this 
broader band to band-edge transitions of V2O5 powder.

On the other hand the band at lower energy might be 
attributed to defects such as oxygen vacancies (VO) [52, 53] 
introduced during synthesis and calcination processes. VO 
plays an important role in the electrical and optical proper-
ties of semiconductor oxides introducing localized energy 
levels in the band gap. As a consequence, when the energy 
separation between these localized levels and conduction 
(and/or valence) bands is in the order of the thermal energy, 

Figure 2. Room temperature Raman spectrum of orthorhombic 
V2O5, collected at 300 K. Peaks are assigned with their spatial 
symmetries and corresponding wave numbers in cm−1 units.

Figure 3. Kubelka–Munk transformed reflectance spectra as a 
function of energy at room temperature for the V2O5 sample.

Figure 4. Logarithm of PL intensity as a function of energy for the 
V2O5 sample. The black arrows indicate the emission peak energy 
evolution as the temperature is increased.
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charge carriers can be promoted to the conduction band (or 
trapped from the valence band) contributing to an increase in 
the electrical conductivity. For optical emissions these levels 
can also work as a new channel of recombination giving 
origin to donor–acceptor or vacancy-related emissions. This 
is the case observed in many oxide systems with nonstoi-
chiometric contents of oxygen like ZnO, SnO2 and In2O3 
[54–56]. As the temperature is increased the vacancy-related 
band shows a slight blue shift compared to band-edge emis-
sions (figure 4).

It is important to note that the ratio between the intensi-
ties of the two broad band changes at 80 K. At this tempera-
ture the band-edge emission and the vacancy-related emission 
present the same intensity. As the temperature is increased 
the vacancy-related emission becomes more intense than the 
band-edge emission up to approximately 200 K. This means 
that, for electrons in conduction band carriers relaxation to 
vacancy-related levels are more favorable than radioactive 
recombinations by band-to-band processes. Above 200 K, the 

intensity of the VO-related band starts to decrease drastically 
compared to band-edge emissions. At room temperature the 
spectrum shows a convoluted emission from the two bands.

In order to investigate the activation energy of vacancy-
related band emission, we have analyzed the integrated PL 
intensity as a function of reciprocal temperature (figure 5) 
using the Arrhenius equation:

( )
γ −

I T
I

=
1 + e

0
E
k T

at
b

 (3)

where kB is the Boltzmann constant, I0 is the PL intensity at 0 
K, γ is the ratio between radioactive and non-radioactive life-
times and Eat is an activation energy. The fitted parameters for 
the VO-related band are I0  =  (1.68  ±  0.07) au, γ  =  26  ±  11 
and Eat  =  (22  ±  3) meV. This activation energy means that 

Figure 5. Integrated PL intensity as a function of reciprocal thermal 
energy and the Arrhenius fit curve for the vacancy-related band 
emission.

Figure 6. Magnetization (M) as a function of the applied magnetic 
field (H) for V2O5 polycrystals in the temperature range of 3–300 
K. The paramagnetic behavior is observed in the whole temperature 
range.

Figure 7. Magnetic susceptibility (χ) versus temperature (T) at 
H  =  100 Oe for V2O5 polycrystals. Black circles and red squares 
correspond to ZFC and FC curves, respectively. The inset shows in 
detail a broad peak in 80 K associated with an antiferromagnetic 
contribution. The green and blue lines are the Curie–Weiss fitting 
for the ZFC and FC curves, respectively.

Figure 8. Magnetic susceptibility (χ) versus temperature (T) at 
H  =  1 kOe for V2O5 polycrystals. Black circles and red squares 
correspond to ZFC and FC curves, respectively. At this field 
the broad peak at 80 K associated with an antiferromagnetic 
contribution and the thermal irreversibility are not observed.

J. Phys. D: Appl. Phys. 48 (2015) 445002
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thermal energy is sufficient to avoid carriers being trapped in 
vacancy-related levels or otherwise ionize these vacancies in 
such a way that electrons are promoted to the conduction band 
above 258 K.

3.3. Magnetic properties

In figure  6 we present magnetization as a function of the 
applied magnetic field for V2O5 polycrystals. The system 
exhibits a paramagnetic behavior in the whole temperature 
range without a significant coercive field at 3 K.

On the other hand, magnetic susceptibility measurements 
(χ  =  M/H) as a function of temperature performed with an 
applied field of H  =  100 Oe, using ZFC and FC protocol, as 
showed in figure 7, presented a thermal irreversibility asso-
ciated with the ZFC/FC processes below 80 K. At this tem-
perature the ZFC curve exhibits a broad peak associated to an 
antiferromagnetic transition, in addition to the paramagnetic 
behavior observed within the whole temperature range.

When the applied magnetic field is increased to H  =  1 kOe, 
as shown in figure 8, the peak at 80 K vanishes and the thermal 
irreversibility is no longer observed suggesting a weak antifer-
romagnetic interaction.

The evidence of the association of the peak at 80 K with 
an antiferromagnetic phase transition is based on the data 
presented in table  1. The well-known Curie–Weiss fitting 
was applied in magnetic susceptibility data using the equa-
tion χ  =  C/(T  −  θ)  +  χ0, where C is the Curie constant, T is 
the temperature, θ determines the type of interaction between 
the moments and χ0 is an additional constant related to a sus-
ceptibility which is temperature independent.

The data obtained after the fit confirms the presence of 
an antiferromagnetic interaction in the system represented 
by negative values of θ. C is related to the number of mag-
netic moments and one can see that it has the same order of 
magnitude (10−5emu.K (g.Oe)−1) in all curves for the entire 
temperature range studied. χ0 is related to an intrinsic sus-
ceptibility of the system, i.e. it is not directly related to the 
magnetic moments due to defects and is constant, around 10−6 
emu (g.Oe)−1.

According to Zimmermann et al [29] in its single-phase 
form V2O5 is a diamagnetic material, however, an orbital 
hybridization due to the strong coupling between the V 3d 
and the O 2p ligand orbitals could lead to a spin distribution 
and consequently a magnetic phase as observed in this work. 
Density functional theory (DFT) analysis [30] predicted that 
the oxygen vacancies present in V2O5−x samples would induce 
changes in its atomic and electronic structure, as well as in 
its magnetic properties. The DFT calculations showed that 
for x  <  0.13 and 0.19  <  x  <  0.45 the system would present 

a ferromagnetic ordering, however, for 0.45  ⩽  x  ⩽  0.5 there 
would be an antiferromagnetic ordering in V2O5−x. The peak 
observed in magnetic susceptibility as a function of tempera-
ture, as shown in figure  7, is evidence of antiferromagnetic 
interaction. In that work, the authors also claim that for oxygen 
deficiencies as large as x ~ 0.5, the V2O5−x crystalline struc-
ture changes from orthorhombic to monoclinic. As verified by 
XRD (figure 1) and confirmed by Raman spectroscopy anal-
ysis (figure 2), our sample consists exclusively orthorhombic 
V2O5 leading to the conclusion that oxygen vacancy density 
in our sample is not large enough to cause structural changes 
as suggested by Xiao and Guo [30] but enough to produce the 
magnetic properties observed.

The alternative model for explaining the magnetic behavior 
observed in our magnetic susceptibility measurements was 
proposed by Kaminski and Das Sarma [57] and is based on 
the formation of bounded magnetic polarons, due to the inter-
action between localized holes and impurities, which causes 
spontaneous magnetization in diluted magnetic semiconduc-
tors. In our case, at low temperatures, the V2O5 sample reaches 
a state where the spins have an antiferromagnetic impurity-
hole exchange interaction [58–60]. Comparing the defects 
band emission intensity data with the band-edge emission 
intensity data, from 80 K to 200 K (figure 4), we observed 
that as the temperature decreases the emission related to 
oxygen vacancies becomes larger than the emission due to 
the band-edge recombinations. This effect might be related 
to the growth of the effective radius of the magnetic polarons 
as the temperature is lowered, as calculated by Kaminski and 
Das Sarma [57], and gives origin to the antiferromagnetic 
behavior observed in the sample. However, the largest part of 
the polarons in the sample is not coupled antiferromagneti-
cally and the system presents a predominance of paramagnetic 
behavior.

4. Conclusions

In this work we investigated the relation between oxygen 
vacancies present in V2O5 polycrystals, obtained by the 
Pechini method after a calcination at 550 °C during 4 h, and 
their structural, optical and magnetic properties. The Rietveld 
refinement of the XRD and Raman spectra analysis con-
firmed the presence of a single orthorhombic V2O5 phase in 
the sample. FEG-SEM images showed that V2O5 presents 
a lamellar structure and DRS measurements estimated the 
optical band gap as being 2.2 eV at 300 K.

Comparing the magnetic measurement data to photolu-
minescence measurements as a function of temperature we 
observed a correlation between the vacancies of oxygen and 
the magnetic properties, as expected by theoretical predictions.

Table 1.  Values obtained after Curie–Weiss fitting to the magnetic susceptibility as a function of temperature data for 100 Oe and 1000 Oe.

H (Oe)

ZFC curve FC curve

C (emu.K (g.Oe)−1) θ (K) χ0 (emu (g.Oe)−1) C (emu.K (g.Oe)−1) θ (K) χ0 (emu (g.Oe)−1)

100 4.0E−5 −1.5 2.2E−6 4.9E−5 −0.8 2.3E−6
1000 5.0E−5 −1.6 1.7E−6 6.0E−5 −2.5 1.7E−6

J. Phys. D: Appl. Phys. 48 (2015) 445002
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In the 5–300 K temperature range a paramagnetic behavior 
is accompanied by a peak centered at 80 K characteristic of an 
antiferromagnetic transition. In addition, the defect associated 
band emission intensity is higher than the band gap emission 
intensity from 80 K to 200 K, the same region where the anti-
ferromagnetic peak has been observed. Thus we suppose that 
this effect is connected to the growth of the effective radius of 
the magnetic polarons which mediate the antiferromagnetic 
interaction observed as the temperature is lowered.

Since V2O5 is widely known for its unusual electronic 
and optical properties, understanding the relation between its 
magnetic and optical properties due to the structural defects 
present in the sample, caused by the synthesis technique used, 
opens the possibility of developing versatile devices.
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