CORRECTION

Correction to: Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO₂-rGO heterostructure

Gabriela Byzynski¹ · Diogo P. Volanti² · Cauê Ribeiro³ · Valmor R. Mastelaro⁴ · Elson Longo⁵

Published online: 23 August 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Correction to: Journal of Materials Science: Materials in Electronics https://doi.org/10.1007/s10854-018-9799-0

The original version of this article contains a missed citation in the Material and Methods Section, GO synthesis.

In the paragraph: "All of the chemical reagents were analytical grade. Graphene oxide (GO) was obtained by the Hummers method [17, 18, 50], using natural graphite as a precursor.", the following reference should have been included: 50. T.M. Perfecto, C.A. Zito, D.P. Volanti, Room-temperature volatile organic compounds sensing based on $WO_3 \cdot 0.33H_2O$, hexagonal-WO₃, and their reduced graphene oxide composites. RSC Adv. **6**(107), 105171–105179 (2016). https://doi.org/10.1039/c6ra16892b.

The original article can be found online at https://doi.org/10.1007/s10854-018-9799-0.

Gabriela Byzynski gabi.byzynski@gmail.com

- ¹ IQ, UNESP, São Paulo State University, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, SP 14800-900, Brazil
- ² IBILCE, UNESP, São Paulo State University, São José do Rio Preto, SP, Brazil
- ³ Embrapa Instrumentation, São Carlos, SP, Brazil
- ⁴ Physics Institute of São Carlos, USP, São Carlos, SP, Brazil
- ⁵ DQ, UFSCar, Federal University of São Carlos, São Carlos, SP, Brazil