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� The corrosion of steel in crude oil was studied using electrochemical noise.
� The data were treated using wavelet transform.
� The experiments were planned using factorial design.
� The effect of sea water, H2S, naphthenic acid and immersion time were investigated.
� The approach used allowed to identify and quantify the corrosion process.
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a b s t r a c t

In this work, the corrosion process of AISI 1020 in crude oil, to which different amounts of sea water (0.5
and 4.0% v/v), naphthenic acid (500 and 3000 ppm), and H2S (50 and 1000 ppm) were added, was inves-
tigated using electrochemical noise at open circuit potential. The different oil samples were prepared
using a 23 factorial design involving the three species described above. To analyze the obtained data,
wavelet transform and energy distribution plot were used. Using this technique it was possible to sepa-
rate the contributions of two types of corrosion, generalized and localized, in oil samples with different
compositions and to analyze the effect of those variables on the changes that occurred during 55 days of
immersion in the experiment. The results showed an increase in pitting formation in those steel samples
studied in oil containing H2S at 50 ppm and 4.0% sea water. The contribution of generalized corrosion on
the metallic surface is higher in oil containing 3000 ppm naphthenic acid than in the other experimental
conditions. The results were confirmed by morphological analysis of the corroded samples.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Corrosion problems in the oil industry occur in different steps of
the production and storage processes. Therefore, corrosion is an
important concern when tanks, pipelines, equipment, and other
steel components are used which can exhibit mechanical failures
and negative environmental impacts due to it [1]. In many cases,
the presence of liquid hydrocarbons can assist in its mitigation as
a result of their ability to form persistent films on the metal.
However, the complexity of this issue arises from the fact that
crude oil has many different chemical components, such as H2S,
CO2, naphthenic acids, and water droplets, which, together with
pH, temperature, flow, and pressure changes, control the corrosion
rate [2]. Of course, the cross effect of the composition and the con-
trolling variables make the determination of the corrosion impact
even more difficult.

Several methods have been proposed to study corrosion pro-
cesses: mass loss, galvanic current detection, electrical resistance,
and electrochemical measurements [3]. In crude oil, however,
one important difficulty in using an electrochemical technique is
its low ionic conductivity, which forbids continuous current
experiments [4]. To overcome this problem, electrochemical impe-
dance spectroscopy (EIS) [5–7] and electrochemical noise (ECN)
[7–9] have been proposed as viable methods. In the literature
[10–14], it is commonly stated that ECN is a result of changes in
the surface condition of the metal, such as breakdown and repair
of the surface film. Therefore, ECN provides valuable information
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Fig. 1. Assembly of the electrodes used in this study.

Table 1
Characteristics of crude oil used in this work.

Test Procedure Results Unit

Free water Inner POP-LP-001 0.14 % v/v
BSW (emulsion–oil) ASTM D 4007–02 0.37 % v/v
BSW total Sum (free water + BSW) 0.51 % v/v
�API at 60 �F Calculated 17.0 –
Salt in oil ASTM D 6470-99 945.5 mg/L
Total acidity ASTM D 664-06 3.25 mgKOH/g
Viscosity at 40 �C Calculated 557.9 cSt
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about complex electrochemical reactions under non-stationary
conditions, which enables this method to be applied in the study
of environment-assisted cracks [15–17], pitting [14,18,19], grain
boundaries [19,20], and general corrosion [17,21].

ECN measurements are generally performed under open circuit
conditions, Eoc, using two symmetric working electrodes, WE1 and
WE2, between which the current noise signal, In, and the potential
noise, En (against a pseudo-reference electrode, RE), are monitored.
Under some experimental conditions the intensity and frequency
noise are high, which makes the process of interpretation of ECN
time series difficult. In this case, mathematical tools such as Fouri-
er transform (FT) [11,12,21] or wavelet transform (WT) [22–24]
can be used to analyze the data. WT has been proposed as an alter-
native tool to detect, classify, and discriminate transient signals
even in the case of superposition of various physical events, with
different time constants [22] from those observed in ECN experi-
ments. Thus, it is able to overcome the limitations of FT, in which
the coefficients are obtained by correlating the original signal with
sine and cosine waves, which is suitable for processing stationary
signals. On the other hand, WT is appropriate for the study of both
stationary and non-stationary ECN time data [22]. Using WT, each
component is defined by a set of wavelet coefficients that contain
information about the time-scale characteristics of the associated
corrosion event. Generally, WT interpretation is undertaken using
energy distribution plots (EDPs) [13,19,22,25]. In this case,
specifically considering corrosion data, it is possible to differenti-
ate, both qualitatively and quantitatively, between two or more
corrosion processes that are simultaneously present in the system,
such as pitting and crevice corrosion [26].

Regarding the applicability of EIS and ECN techniques to study
the corrosion of steel in crude oil, only a few papers have been
found in the literature. Mahjani et al. [7] used these techniques
to estimate the corrosion rate of carbon steel in crude oil with
20% water at room temperature and under stirring. The time series
noise patterns obtained by ECN measurements were transformed
into the frequency domain by fast FT and then their power spec-
trum densities (PSDs) at a frequency were determined for compar-
ison with the corrosion rate. They found that the PSDs of the
potential and of the current varied with changes in the electrode
rotation rate and immersion time. In addition, the relationship
between the corrosion rate and the spectral noise resistance was
better at lower frequencies. However, information about the type
of corrosion or mechanism involved has not been described. Becer-
ra et al. [27] studied the effect of the oil content on the corrosion of
AISI–SAE 1010 carbon steel in oil-in-water emulsions under con-
trolled hydrodynamic conditions using potentiodynamic polariza-
tion and EIS. Different systems were studied including brine,
surfactant solution, and oil-in-water emulsions, in which the aque-
ous phase was the surfactant solution and the oil phase was a min-
eral oil. This study found that the effect of the oil content on the
electrochemical activity of carbon steel changes with the internal
phase relationship (IPR). For emulsion with oil contents up to
20 wt% the electrochemical activity was slightly higher than that
of the base surfactant solution. The electrochemical activity of
emulsions with oil contents between 20 and 45 wt% showed
almost no variation as oil content changed, while for emulsions
with oil contents between 45 and 70 wt% the activity diminished.
The authors explain the data in terms of a model that postulates
the formation of an oily phase on the steel surface, whose stability
depends on the magnitude of the hydrodynamically induced shear
stress at the interface.

The crude oil composition is very complex and this fact compli-
cates the interpretation of the results, which makes the use of
experimental design and chemometric techniques very helpful.
The application of chemometric techniques in the field of corrosion
science is not widespread [28]. Then, considering what has been
described above, in this work we study the corrosion of AISI
1020 steel in crude oil using ECN and the wavelet transform to ana-
lyze the data. Different aggressive compounds commonly encoun-
tered in oil, such as sea water, naphthenic acids, and sulfide
compounds, were investigated. The approach used in this work
combined with factorial design of experiments has been shown
to be very useful in the detection of the main corrosive agents con-
tained in the oil and enables a refined analysis regarding their
influences on corrosion mechanisms.
2. Experimental

AISI 1020 steel (Sanchelli) was used as the working electrode. It
was annealed at 900 �C for 60 min to relieve the mechanical stress
and homogenize the grain size [29]. Two identical electrodes, WE1

and WE2, with A = 0.7 cm2 were embedded in polyester resin, side
by side, separated by 0.1 cm, according to the scheme shown in
Fig. 1. Prior to the tests, the working electrodes were ground to
1200 grit emery paper, and finally cleaned by acetone in an
ultrasonic bath. A 1.0 cm2 Pt plate [30] was used as the pseudo-
reference RE. It was positioned parallel to the WE1, separated by
0.1 cm, controlled by a Teflon spacer. Both potential, En, and
current, In, noise were collected simultaneously.

The crude oil characteristics presented in Table 1 highlight the
total water content, BSW, 0.5%. The water-in-oil emulsions were
prepared by adding artificial sea water (H2O) [31], naphthenic acid
(HNap, Aldrich), and sodium sulfide (Na2S, Synth) to the petroleum
(17 �API) sample under stirring at 40 �C. In order to minimize the
number of experiments to be performed, as well as to measure
the cross effects among the variables, a full factorial design of three
variables (concentration of H2O, HNap, and Na2S) at two levels was
used [32,33]. In a full factorial design, nk experiments must be per-
formed, where n is the number of variables and k is the number of
values of each one of those variables investigated. Thus, to investi-
gate three variables at two different values each, 23 = 8 experi-
ments are needed. The eight experimental conditions



Table 2
Experimental matrix of the 23 factorial design.

Experiment [H2O] [HNap] [Na2S] Variables Levels

(�) (+)

01 – – –
02 – – +
03 – + – H2O 0.5% 4.0%
04 – + +
05 + – – HNap 500 ppm 3000 ppm
06 + – +
07 + + – Na2S 50 ppm 1000 ppm
08 + + +
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investigated are presented in Table 2. The calculation of the experi-
ments is the combination of all variables at their different values.
The calculations were performed by using Calc spreadsheet pro-
gram, of the LibreOffice. As response to the analysis of the effects
presented in Pareto plots, the accumulated energy for each type
of corrosion was used: d1–d4 to general corrosion and localized
corrosion for d5–d8. To follow the aging effects of the corrosion
process on the samples, the noise experiments were performed
during 55 days. During this time period, the temperature of the
solution was controlled at 40 �C and ECN data were collected four
times, after 2, 15, 31, and 55 days.

To perform the ECN measurements at Eoc an Autolab-PGSTAT20
with an ECN module controlled by NOVA 1.6 software was used.
The noise was registered at a sampling frequency of fs = 6 Hz, with-
in a period of 682 s for each record, leading to 4096 points. For
stress, the maximum frequency related to a particular level in
the EDP plot depends on the data acquisition rate (remember that
d1 level is the Nyquist frequency). As consequence, for purposes of
comparison with other literature studies should be considered the
acquisition rate of the electrochemical noise signal. The signal ana-
lysis was performed using an orthogonal Daubechies function of
the fourth order, ‘‘Db4’’, with eight levels of decomposition. The
energy distribution relative to the level coefficients, d1–d8, mainly
reflects the information about the processes of initiation (or devel-
opment) of corrosion which are under investigation. The main
property of the chosen function is that the energy of the analyzed
signal is equal to the sum of the energies of all components
obtained by the wavelet transform; these look like fractal-type sig-
nals and a faster convergence of wavelet coefficients is therefore
expected. In this work the results were interpreted by estimating
the energy contribution of each level of decomposition in relation
to the original signal.

To observe the corroded surface after 55 days of immersion, the
samples were cleaned with pure gasoline and toluene in an ultra-
sonic bath, and then analyzed using optical microscopy. The
Image-J software was used to analyze of the images obtained.
3. Results and discussion

The system under investigation has a slow approach towards
the steady state, and therefore it was left to rest for two days
before performing the first measurement. After that period of
immersion, the potential and current noise had intensities of
10�5 V and 10�9 A, respectively. Although the ECN technique
allows the acquisition of both signals (E and I), only the current
noise was analyzed. Abrupt changes in the potential and/or current
are related to the local disruption of the passive layer, which is fol-
lowed by repassivation, leading once again to an increase in En and
decrease in In. In most cases, the reduction reaction is not fast
enough to consume all the species coming from metal oxidation,
causing the majority of the charge generated to be used for
recharging of the capacitive film [34]. Thus, the slow recovery of
potential transients is caused by the capacitive discharge process,
while current transients reflect initiation, growth, and repassiva-
tion processes of pitting. Therefore, it is convenient to use only
the In signal for the quantitative analysis of the corrosion process.

Fig. 2 shows the In signal measured using the setup described
above for the different experimental conditions described in
Table 2. First, different qualitative aspects of the noise patterns
can be discussed. For example, in this figure it is possible to
observe that for the samples containing 0.5% v/v seawater (ex-
periments 01–04) the intensity In is lower than for the samples
containing 4.0% v/v (experiments 05–08).

Under the experimental conditions, when corrosion occurs, the
anodic current flow is consumed by: (i) double layer charging, (ii)
dissolution of the passive layer formed on the metal surface, and/or
(iii) faradaic reactions at the metal/oil interface. Different papers
[35–40] have proposed that high intensity noise is related to pit
formation, and it is common sense that the adsorption of aggres-
sive ions such as chloride is necessary for their initiation. When
the Cl� concentration was increased (experiments 05–08), an
increase in the number of current transients was observed. In the
literature [36] these are described as being associated with the
aggressiveness of Cl� ions over the passive film. At this point, it
is important to stress that the current scales in Fig. 2 are different.
To make this point clear, an inset of experiment 06 using the same
scale as experiment 02 is also presented in this figure.

Fig. 3 shows In for different immersion times: 2 and 55 days of
immersion. In this figure, it was necessary to use a different ampli-
tude scale to highlight the current noise data. First, it is important
to observe that an apparent change in the noise pattern occurred as
the immersion time increased. From a direct visual inspection, it is
also possible to appreciate that the time-scale of the fluctuations
observed in two days is smaller than that observed in 55 days. This
difference can be linked to a change in the corrosion mechanism, as
when the immersion time increases the thickness and stoichiomet-
ric composition of the film formed could change. As described in
the Introduction, an increase in the current amplitude transient
could be associated with an increase in the pit formation process
[8]. Then, from Fig. 3, it is possible to propose that after 55 days
the pit corrosion has an important effect on the corrosion of steel
here investigated. This can be confirmed by the optical micro-
graphs also shown in Fig. 3, where there are a greater number of
localized attacks after 55 days of immersion compared to 2 days.

In conclusion, even a qualitative analysis is very complex for the
data presented in Figs. 2 and 3. For a detailed analysis, it is neces-
sary to set up a method to detect and to quantify such changes
which would have a direct utility for monitoring the corrosion. In
other words, it is not simple to assign changes in the type or corro-
sion rate using the ECN in the time domain, since the transients can
overlap each other during simultaneous formation of two (or
more) pits, leading to convoluted oscillations that can be incorrect-
ly interpreted as multiple transients.

Several methods of converting time domain data can be used,
making it possible to obtain quantitative and qualitative informa-
tion. Among these methods are FT and WT, as described in the
Introduction of this paper along with the advantages of the latter
mathematical procedure. Therefore, in order to separate the contri-
butions of the processes, the WT was applied to all current noise
data. These signals are composed of different events that can be
classified according to their frequency. The schematic diagram
for the WT used to analyze the data is shown in Fig. 4, where the
relationship of the frequency of each level of decomposition (d1–
d8) with the number of data, which is halved in every stage of
decomposition, is illustrated. The Daubechies wavelet was chosen
since it presents a similar shape to the current noise signal
obtained here. Whereas the intensity and frequency noise are
related to the type of corrosion, it is possible to associate and quan-



Fig. 2. Current noise of AISI 1020 in oil samples with different compositions (described in Table 2) after 48 h of immersion, (T = 40 �C).

Fig. 3. Current noise of AISI 1020 carbon steel in crude oil with composition of experiment 07 (Table 1) after 2 and 55 days of immersion, and optical micrographs in the
respective immersion times, (T = 40 �C).
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Fig. 4. Diagram of energy decomposition of the ECN signal current through the wavelet transform.
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tify the energy accumulated in each decomposition level relating
to the type of corrosion with the original current signal through
energy distribution plots (EDPs). Then, using such transforms in
the context of the frequency domain clarifies those variations in
the profile of the current noise, making it possible to correlate
the characteristic patterns of the signal with the chemical–physical
phenomena [22–24].

The EDPs relative to the level coefficients, d1–d8, mainly reflect
information concerning the processes of initiation (or development)
of corrosion being investigated. Several studies [12–14,18,38,41,42]
have shown that current transients related to the localized process,
such as pitting, has lifetime higher than 2 s (frequency < 0.5 Hz).
Therefore, this feature of the lifetime of the current transient places
the localized processes in low frequency levels (d5–d8) in the EDP
plots. The total time of transient oscillation is related with a pit for-
mation, and the stages of growth and pit repassivation last longer
than the transient current. Therefore, we can correlate the most part
of the charge consumed during process with the steps which last a
longer period of time. Otherwise, in some cases, it was described
in the literature [22,43] that the initial current transient pulse
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related to a pitting (narrow spike) formation can also be contained in
the high frequency levels. However, even in these cases, most part of
the energy appears during the slow decay of the transient and is
associated with low frequency levels.

Taking these aspects into account, in the present paper the
levels d1–d4 (f > 0.38 Hz) could be attributed to general corrosion,
while the remaining levels, d5–d8, could be associated with local-
ized corrosion processes (f < 0.38 Hz) such as pit formation. Fig. 5
presents the energy dispersion for the different levels of decompo-
sition obtained by the WT applied to the ECN data of experiments
listed in Table 2 over 55 days. As can be observed in Fig. 5, there are
important changes in the energy dispersion levels of both intervals,
d1–d4 and d5–d8, as the period of immersion increases, which could
be related to changes in the corrosion rate or mechanism or both.

Analyzing the signal decomposition presented in Fig. 5, an
enhancement of localized corrosion can be proposed for most of
the cases, as well as a consequent decrease in the contribution of
the generalized process as the period of immersion increases.
One possible explanation for such a change could be that in the ini-
tial stage, formation of the mackinawite species occurs (Fe(1+x)S,
x = 0–0.125); this species is unstable and is inter-converted into
iron monosulfide (FeS) [44]. After some time, however, the FeS film
could dissolve, exposing the metal again [45]. In this initial period,
the film growth and redissolution process lead to a generalized
corrosion behavior [34,40,46]. At the end of the experiment, it
was observed that the localized corrosion had become the main
contribution of the signal.

To support the results obtained by ECN analysis, images were
obtained using optical microscopy after 55 days of immersion
under the experimental conditions studied. The micrographs
presented in Fig. 6 show the presence of two types of corrosion.
However, the contribution of energy in the processes of general-
ized and localized corrosion is different in each case, as concluded
above from wavelet analysis. The corroded region is distinguished
by darker tone compared to not corroded region. Thus, it is possible
Fig. 5. Energy distribution plot (EDP) of the steel/oil system in experimental conditions (
55 days. (For interpretation of the references to colors in this figure legend, the reader i
to compare via the same threshold of the grayscale (from image in
8 bits) the intensity of attacks among different images. For the
samples investigated using the experimental conditions of experi-
ments 02 and 06 (Table 2) it is possible to observe the existence of
two types of corrosion. After 55 days of immersion, analyzing the
data in the energy distribution plots in Fig. 5 for sample 02 and
06, it is possible to conclude that generalized corrosion contribute
to 26% and 10% of the total corrosion, respectively. This conclusion
is corroborated from the images for sample 02 and 06 showed in
Fig. 6a and b, respectively, it is clear that the main corrosion
process for sample 02 is generalized whereas, for sample 06, the
presence of generalized corrosion is less evident.

In order to correlate the effects of the three corrosive species
with the types of corrosion during the experiments a factorial
design approach was used. Fig. 7 shows the normalized Pareto
plots [32] used to interpret these effects. As a response, the sum
of the dispersion energy related to the generalized process was
chosen, that is, levels d1–d4. Then, if the effect is higher than zero,
the generalized corrosion is mainly observed under those condi-
tions. Otherwise, if an effect has a negative value (to the left of
the central axis) it means that there is an important contribution
of the localized corrosion. The effect of the immersion period is
also investigated and is presented in Fig. 7 for 2, 15, 31, and
55 days. Finally, the two vertical dotted lines are the limits of the
experimental significance; that is, if the effect value is between
these limits, it is below the experimental error.

Analyzing the data shown in Fig. 7, it is possible to conclude
that at the beginning of the process (two days) the most important
effect that influences the existence of localized corrosion is the sea
water concentration, followed by the sulfide concentration (vari-
ables 1 and 3 of Table 2). The corrosive effect of sea water on a
fresh steel surface is expected since the inclusions and grain
boundaries are very sensitive to attack by chloride ions. Besides,
it is well established in the literature [46,47] that sulfide ions make
the situation concerning the localized corrosion even worse. From
Table 2) after different days of immersion: ( ) 2 days, ( ) 15 days, ( ) 31 days, ( )
s referred to the web version of this paper.)



Fig. 6. Optical micrographs of AISI 1020 steel after 55 days of immersion in oil at 40 �C. (a) Exp. 02: 0.5% H2O; 500 ppm HNap; 1000 ppm Na2S and (b) Exp. 06: 4.0% H2O;
3000 ppm HNap; 1000 ppm Na2S.

Fig. 7. Normalized Pareto plots to interpret the calculated effects using the experiments presented in Table 1. The response used was summation of levels d1–d4 of dispersion
energy obtained by wavelet transform analysis. Variables: (1) sea water, (2) naphthenic acid, (3) Na2S.
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a different point of view, the cross effect between the naphthenic
acid and sulfide ions (variables 2 and 3 of Table 2), which leads
to the predominance of generalized corrosion, could be attributed
to the ability of some organic acids to redissolve the FeS film
formed on the ferritic grains [45,46].

For those experiments in which measurements were conducted
at intermediate immersion time periods, 15 and 31 days, a con-
tinuous change in the effect values can be observed in Fig. 7. Final-
ly, after 55 days of immersion, a description of the effect of the
different variables is more complicated. Now, the effect of sea
water is mainly related to the generalized corrosion. This could
be explained by considering that different products of corrosion
are on the surface and could contribute to modifying the effect of
the most aggressive species in sea water: chloride ions. Indeed,
after 55 days of immersion, the cross effect of the three variables
is one of the most important and contributes mainly to the gener-
alized corrosion. This cross effect could be related to the fact that
the inclusions, which were active during pit nucleation, are no
longer important. On the other hand, the effects of naphthenic acid
and sulfide ions (variables 2 and 3 of Table 2) are also related to the
generalized corrosion. According Yépez [46], when the oxidizing
agent is H2S, FeS film forms, which decreases the aggressive effect
of the naphthenic acid. However, if the oxidizing agent is H2O, fur-
ther dissociation of the naphthenic acid could occur and then the
cathodic reaction rate would increase, leading to an overall corro-
sive aggressive effect of the naphthenic acid. In conclusion, the set
of experiments used in this work demonstrates the possibility of
detecting various corrosion processes encoded in a complex signal,
as in the case of ECN. Furthermore, it was possible to evaluate the
relative weights of the two processes occurring simultaneously.

4. Conclusions

The results showed an increase in pitting formation in those
steel samples studied in the oil containing H2S at 50 ppm and
4.0% sea water. The contribution of generalized corrosion on the
metallic surface was higher in the oil sample containing
3000 ppm naphthenic acid than in the other experimental condi-
tions. It was also possible to observe the importance of the differ-
ent variable changes as the period of immersion increased. It is
possible to conclude that for short exposition times (two days)
the most important effect that influences the localized corrosion
is the sea water concentration, followed by the sulfide concentra-
tion. Besides, the cross effect between the naphthenic acid and sul-
fide ions, which can only be calculated using a factorial design,
leads to the predominance of generalized corrosion. After 55 days
of immersion, the cross effect of the three variables is one of the
most important and contributes mainly to the generalized corro-
sion together with the effect of sea water, which initially con-
tribute to the localized corrosion.

The combined use of the electrochemical noise technique,
wavelet transform analysis, and the chemometric approach
allowed us to qualify and quantify corrosion in a steel/oil environ-
ment. The methodology used in this work demonstrates the possi-
bility of detecting and assessing the relative contributions of
different corrosion processes (localized and generalized) occurring
at the same time in a complex system. Consequently, signal pro-
cessing analyzes of this kind can be an efficient tool for corrosion
monitoring in the oil industry.
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