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The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as
its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The elec-
trochemical behavior of themodified electrode and the electrooxidation of HCTZwere explored using cyclic volt-
ammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the
electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for
the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution,
in which the linear voltammetric response was in the concentration range from 1.39 × 10−5 to 1.67 × 10−
4 mol L−1 with a limit of detection of 7.92 × 10−6 mol L−1 and a sensitivity of 0.138 μA L mmol−1. Tafel analysis
was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Electrochemical methods comprise a collection of extremely useful
and versatile measurement tools in biological [1–5], food [6–9] and
environmental [10–13] analysis due the high sensitivity, selectivity, ac-
curacy and precision, as well as wide linear dynamic range, with rela-
tively low-cost instrumentation. In the pharmaceutical area [14], the
use of electrochemistry is an important approach in drug discovery
and research as well as quality control, drug stability, determination of
physiological activity and especially in their dosage forms in biological
samples.

The diuretics are substances used to increase the production of urine
and sodium excretion in order to adjust the volume and composition of
body fluids or to eliminate excess of fluids [15]. As therapeutic agents,
they are used in the treatment of congestive heart failure, edemas, hy-
pertension, kidney, liver cirrhosis, lung diseases, and prophylaxis of
renal failure [15]. According to the World Anti-doping Agency
(WADA) the diuretics are on the list of prohibited substances in sports
[16] due to their potent ability to remove water from the body and to
mask the administration of other doping agents, conditions which pro-
mote rapid weight loss that can be required to meet a weight category
and reducing their concentration in urine primarily because of an in-
crease in urine volume, respectively [17]. In this manner, it was expect-
ed that these substances were not found in biological samples in
athletes. Despite this, some athletes misuse diuretics in sports in order
to give them competitive advantage.
Among the diuretics, the most common drug detected in the year
2008 by WADA laboratories [17] was hydrochlorothiazide (6-chloro-
1,1-dioxo-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide —
HCTZ). The HCTZ is a benzothiazide diuretic that acts directly on the
kidney by increasing the excretion of sodium chloride and water and,
to a lesser extent, that of potassium ion [18]. Also, it is a antihyperten-
sive drug which improves the action of other hypotensive substances.

Thus, the development of convenient, rapid, selective and sensitive
analytical methods for the determination of illicit diuretics, such as
HCTZ, in human urine samples, especially in the urine samples of ath-
letes has gained great importance. The official method recommended
by the United States Pharmacopeia [19] for the determination of HCTZ
involves the use of high performance liquid chromatography (HPLC).
Still, in recent years, different methods have been reported for the de-
tection of HCTZ in pharmaceutical formulations or biological samples,
such as capillary electrophoresis [20–22], chemiluminescence [23,24],
chemometry [25], conductimetry [26], polarography [27], liquid
chromatography/tandem mass spectrometry [28–31] and spectropho-
tometry [32–34].

Although there are several methods, most of these require
large amounts of sample, several time consuming manipulation steps,
sophisticated instruments and special training. To minimize these
problems and achieve better sensitivity and selectivity, there is the pos-
sibility of using electrochemical techniques applying electrochemical
sensors. In this way, several electrochemical sensors for HCTZ detection
based on unmodified and modified electrodes have been developed
(Table 1).

Among the wide range of chemical modifier compounds, the nickel
hydroxide has gained notoriety due its ease in construction of modified
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Table 1
A brief review of electrochemical sensors for HCTZ.

Material Ref.

5-Amino-20-ethyl-biphenyl-2-ol modified carbon paste electrode [41]
Benzoylferrocene-modified carbon nanotube paste electrode [37]
Boron-doped diamond electrode [38]
Carbon nanotube/polypyrrole film [42]
Carbon nanotubes/silicone rubber composite electrode [43]
Ferrocenedicarboxylic acid modified carbon paste electrode [44]
Glassy carbon electrode [39]
Graphene/ferrocene composite carbon paste electrode [45]
Multiwalled carbon nanotubes modified electrode [46]

345W.B.S. Machini et al. / Materials Science and Engineering C 57 (2015) 344–348
electrodes both in the formof thin films andmicro/macro-scale, in addi-
tion to the presence of sites of Ni(II), especially in its oxidized form
Ni(III),which have excellent properties in the electrochemical oxidation
of various organic molecules [35]. Therefore, in this manuscript, the
preparation and electrochemical characterization of a nickel hydroxide
modified nickel electrode, as well as, its behavior as electrocatalyst
toward the oxidation of hydrochlorothiazide were investigated.
2. Material and methods

2.1. Apparatus

Cyclic voltammetry measurements were carried out with a micro-
Autolab (Metrohm) controlled by a microcomputer using de GPES 4.9
software in a thermostatic electrochemical cell containing three elec-
trodes: nickel hydroxidemodified nickel electrode (NMN) as the work-
ing electrode, platinum wire as the auxiliary electrode and saturated
calomel electrode (SCE) as the reference electrode.
2.2. Reagents and solutions

All the chemicals were of analytical high-purity and all solutions
were prepared using Millipore Milli-Q deionized water. The supporting
electrolyte used for all experiments was 0.5 mol L−1 NaOH (Sigma-
Aldrich). The analyte solution was prepared by the addition of HCTZ
(Sigma-Aldrich) in 0.5 mol L−1 NaOH.
2.3. Preparation of nickel and nickel hydroxide-modified nickel (NMN)
electrode

A nickel (100% purity) rodwith a diameter of 6.24mmand length of
10.0 cm was introduced in a glass cylinder with inner diameter of
8.0 mm and was wrapped with epoxy resin. This electrode stayed for
24 h in room temperature to dry. The electrode surface was polished
using 400 and 600 mesh emery paper and thoroughly rinsed with dis-
tilled water. The modification of the working electrode was carried
out by cyclic voltammetry in a range of potential from 0.25 V to 0.50 V
with fifty potential cycles in 0.5 mol L−1 NaOH solution.
Fig. 1. Cyclic voltammograms for deposition of nickel hydroxide on the nickel electrode
surface applying 50 potential cycles in a potential range from 0.25 to 0.50 (V) vs. SCE at
scan rate of 25 mV s−1 in 0.5 mol L−1 NaOH solution. Red line = 1st cycle; blue line =
50th cycle.
2.4. Performance of the modified nickel electrode as electrochemical sensor
for HCTZ

The HCTZ determination was made by the application of potentials
via linear voltammetry using a potential range from 0.25 V to 0.45 V
vs. SCE at a scan rate of 25 mV s−1. The modified nickel electrode was
submitted to potential scans in 25 mL of 0.5 mol L−1 NaOH. The evalu-
ation of the electrochemical performance of sensor for HCTZ was
conducted by the addition of the analyte (1.0 mmol L−1) in the electro-
chemical cell.
3. Results and discussion

3.1. Activation of nickel modified electrode

The chemical modification on the nickel electrode surface wasmade
applying 50 potential cycles in a potential range from0.25 V to 0.50 V vs.
SCE at a scan rate of 25mVs−1 in 0.5mol L−1 NaOHsolution. Cyclic volt-
ammograms (Fig. 1) obtained show that consecutive potential scans
lead to a progressive increase of anodic and cathodic peak current
values, indicating the formation of the Ni(OH)2 in surface electrode.
The electrode becomes derivatized to the oxide species quantitatively
in surface. The electrochemical reactions may be described as follows
[35]:

Niþ 2OH−→ Ni OHð Þ2 þ 2e− ð1Þ

Ni OHð Þ2 þ OH− → NiO OHð Þ þH2O þ e− ð2Þ

The shift of the peaks due to the number of scan is due changes in
crystal structures of the nickel hydroxide and nickel oxyhydroxide on
electrode surface.

3.2. Electrochemical properties of the nickel hydroxide modified nickel
electrode

After the activation of the electrode, the electrochemical behavior of
the modified nickel electrode was studied by cyclic voltammetry in
0.5 mol L−1 NaOH solution. The electrochemical processes related to
the modified electrode were stabilized after fifteen potential cycles. It
is further observed an increase the reversibility of the redox system.
From the second potential scan, both currents slightly increased and
the distance between the peak potentials decreased to stabilize after
fifteen cycles (Supplementary material).

The cyclic voltammogram obtained after stabilization for the modi-
fied electrode (Supplementary material) revealed a reversible system
with only one redox couple (Epc = 0.330 and Epa = 0.396 V vs. SCE for
scan rate of 25 mV s−1) which is attributed to the redox process of
Ni(II)/Ni(III), peak-to-peak separation (ΔEp) of 0.066 V and half poten-
tial (Ep/2) of 0.363 V versus SCE, according to Eq. (2).

The effect of the potential scan rates (5 to 150 mV s−1) on the
voltammetric response for the modified electrode in 0.5 mol L−1

NaOH solution was investigated. The recorded cyclic voltammograms
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exhibit an increase of the anodic and cathodic peak current in function
of scan rate (Supplementary material). This behavior suggests that the
redox process follows adsorptive-controlled mechanism, in which the
electron transfer occurs in the thin layer on the surface of the electrode.
The concentration of electroactive specieswas calculated from the slope
of the linear relation of peak current as a function of the scan rate, as
represented by Eq. (3) [36]:

Ip ¼ n2 F2

4 RT
AvΓ ð3Þ

in which Ip is the peak current (ampere), n is the number of electrons, F
is the Faraday constant (C mole−1), A is the area of the electrode surface
(1.22 cm2), Γ is the concentration of electroactive species (mol cm−2),
R is the gas constant (C K−1 mol−1), T is the temperature (K) and v is
the scan rate (V s−1). Using the relation of peak current as a function
of the scan rate (≤100 mV s−1), it was possible to obtain the con-
centration of electroactive species on the electrode surface, i. e.,
3.83 × 10−9 mol cm−2.

3.3. Electrocatalytic oxidation of HCTZ by NMN electrode

The determination of HCTZ in unmodified electrodes is generally dif-
ficult, because it occurs at high potential values [37–39]. Recently,
Alghamdi [39] reported the oxidation of HCTZ in Britton–Robinson buff-
er solution (pH 3.0) using a glassy carbon electrode by anodic stripping
voltammetry (ASV) and cyclic voltammetry (CV). Using ASV, the drug
gave an increase of anodic peak at +1.2 V vs. Ag/AgCl with a calibration
graph for HCTZ obtained from 4.0 × 10−6 to 4.0 × 10−5 mol L−1 and a
limit of detection of 4.3 × 10−9 mol L−1. From another point, in evaluat-
ingmodified electrodes, a significant decrease in the potential of oxida-
tion of the HCTZ was obtained by Beitollahi and Ghorbani [37]. Using a
benzoylferrocene modified multi-walled carbon nanotube paste elec-
trode was obtained the electrocatalytic oxidation of HCTZ at +0.645 V
versus Ag/AgCl over a linear concentration range from 6.0 × 10−7 to
3.0 × 10−4 mol L−1 and limit of detection 9.0 × 10−8 mol L−1.

In order to evaluate the electrocatalytic activity of the NMN electrode
toward HCTZ oxidation, the linear voltammograms were obtained in the
absence and presence of HCTZ in 0.5 mol L−1 NaOH solution and the
curves are presented in Fig. 2. Upon the addition of 5.20 × 10−5,
1.30 × 10−4 and 3.90 × 10−4 of HCTZ, the anodic peak currents increase
while the cathodic peak current decreases, indicating that modified elec-
trode exhibits excellent electrocatalytic activity toward the oxidation of
Fig. 2. Cyclic voltammogram for NMN-sensor in 0.5 mol L−1 NaOH solution in absence
(red line) and presence of 5.2 × 10−5 (green line); 1.3 × 10−4 (blue line); and 3.9 × 10−4

(black line) HCTZ using a potential range from 0.25 to 0.45 (V) vs. SCE at 25 mV s−1.
HCTZ. Furthermore, a decrease in the overpotential of 744mV compared
to the unmodified electrodes can be observed. These behaviors are con-
sistent with a very strong electrocatalytic effect.

In addition, a kinetic study of HCTZ oxidation reaction by the Tafel
region was performed using the conventional method of constructing
Tafel plots (log Current (A) vs. overpotential (V)) for each HCTZ concen-
tration to elucidate the kinetics of electron transfer between the active
centers in the thin layer and the analyte [36]. The Tafel region represents
the kinetics of the electron transfer betweenHCTZ andnickel hydroxide.
In this way, the electron transfer coefficient as a function of the number
of electrons involved in the determination step of the redox process can
be obtained by the slope (Eq. (4)) of the Tafel relation (see Fig. 3).

According to the values of Tafel slope and αan reported in Table 2,
the electron transfer coefficient was dependent of HCTZ concentration
indicating a two-electron transfer as determining step.

slope ¼ 2:303 RT
∝anF

ð4Þ

Seeing that anodic transfer coefficient is 0.5, the electronic transfer
number was calculated from slopes (0.061 ± 0.004 V/decade), which
approaches the theoretical value of 2.

The apparent order of reaction (q) for the respective concentrations
of HCTZ was determined by the Tafel region with potential fixed based
on the linear relation of log Current (A) vs. log concentration of HCTZ
(Supplementary material), which the apparent order of reaction varied
were 0.088, 0.051, 0.021 and 0.017 in relation potential range of the
Tafel region (0.412 V to 0.442 V versus SCE). Therefore, q is dependent
on the concentration of HCTZ at an applied potential (Supplementary
material), where it is defined by:

q ¼ d log I
d log HCTZ½ �

� �
E;T

: ð5Þ

The effect of the potential scan rates (5 to 200 mV s−1) on the
voltammetric response of a NMN electrode was investigated in a solu-
tion containing 5.2 × 10−5mol L−1 HCTZ (Fig. 4A). The anodic peak cur-
rents varied linearly with the scan rate (Fig. 4B), suggesting that the
HCTZ oxidation follows an irreversible oxidation process and an
adsorptive-controlled mechanism. For scan rates above 150 mV s−1, a
small decrease in the anodic and cathodic peak currents was observed,
indicating the existence of kinetic limitation in the reaction between
nickel hydroxide and HCTZ for high scan rates. From these results, a
scan rate of 25 mV s−1 was chosen for further studies since it results
in voltammograms with better peak definition.
Fig. 3. Tafel relation for the NMN-sensor in presence of 5.2 × 10−5 (■); 1.3 × 10−4 ( );
3.9 × 10−4 ( ); and 7.5 × 10−4 mol L−1 ( ) of HCTZ.



Table 2
Kinetic parameters for hydrochlorothiazide oxidation at NMN-sensor in different HCTZ
concentration in 0.5 mol L−1 NaOH at 298 K.

[HCTZ] mol L−1 Tafel slope (V dec−1) αan

5.20 × 10−5 0.058 1.02
1.30 × 10−4 0.059 1.00
3.90 × 10−4 0.062 0.95
7.50 × 10−4 0.067 0.88
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On the basis of the reported results, the followingmechanism can be
proposed for themediated oxidation of HCTZ on themodified surface, in
which the NMN electrode promotes the oxidation of HCTZ through of a
catalytic mechanism, making an electrochemical step according to the
following equation:

Ni IIð Þ
surfaceð Þ→Ni IIIð Þ

surfaceð Þ þ e−: ð6Þ

In addition, a chemical step occurs, in which HCTZ is oxidized on
modified surface via the following reaction:

2Ni IIIð Þ
surfaceð Þ þHCTZ redð Þ→2Ni IIð Þ

surfaceð Þ þHCTZ oxð Þ: ð7Þ
Fig. 4. (A) Typical cyclic voltammograms for NMN-sensor in 0.5mol L−1 NaOH containing
5.2 × 10−5 mol L−1 HCTZ in the potential scan rates of 5, 15, 25, 50, 75, 100, 150 and
200 mV s−1 and (B) linear dependence of anodic and cathodic peak currents to the scan
rate values.
Finally, linear sweep voltammetric measurements were carried out
with successive additions of HCTZ from 2.00 × 10−6 mol L−1 to
2.07 × 10−4mol L−1 to evaluate the performance of theNMNas electro-
chemical sensor and to obtain an analytical curve (Fig. 5A). The values of
anodic peak current were linearly dependent on the HCTZ concentra-
tion range from 1.39 × 10−5 mol L−1 to 1.67 × 10−4 mol L−1 with a
limit of detection [40] of 7.92 × 10−6 mol L−1 and a sensitivity of
0.138 μA L mmol−1 (Fig. 5B), according to Eq. (8). At concentrations
greater than 1.67 × 10−4 mol L−1, a saturation of the electrocatalytic
sites was observed. This phenomenon can be explained by the adsorp-
tion phenomenon of HCTZ and saturation of the electroactive sites of
nickel on the electrode surface.

Ipa μAð Þ ¼ 3:48þ 0:138 HCTZ μmol L−1
� �h i

ð8Þ

4. Conclusion

The nickel hydroxide layer chemically deposited at the surface of
nickel electrode acts as an active electrocatalyst for the HCTZ oxidation
through the mediation by Ni(II)/Ni(III) redox couple in NaOH solution.
The oxidation currents are directly proportional to HCTZ concentration
Fig. 5. (A) Linear voltammogram for NMN-sensor in 0.5 mol L−1 NaOH in absence and
successive additions of HCTZ using a potential range from 0.25 to 0.45 (V) vs. ECS at
scan rate of 25 mV s−1 and (B) relationship of the current response (n = 3) of the NMN
electrode with the HCTZ concentration.



348 W.B.S. Machini et al. / Materials Science and Engineering C 57 (2015) 344–348
in a wide range, which exhibits the potential applications of the sensor
for the anodic determination of HCTZ by voltammetric methods.
Furthermore, the NMN-sensor showed distinct advantages such as
simple preparation, good chemical and mechanical stability, low detec-
tion, and high sensibility and offers a promising platform for HCTZ
detection in real samples, such as in doping control analysis.
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