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Abstract Pyrans are privileged heterocyclic structures found in nu-
merous natural compounds with extraordinary biological activities. The
synthesis of these relevant structures has attracted a great deal of at-
tention over the years. Catalytic methodologies based on the activation
of neutral unsaturated functionalities of acyclic compounds that under-
go intramolecular cyclizations have achieved prominent synthetic rele-
vance. In this short review, we discuss the successful construction of di-
hydropyran and dihydro-1,4-oxazine derivatives from acyclic precursors
by metal-catalyzed intramolecular cyclizations through carbon–carbon,
carbon–oxygen, and carbon–nitrogen bond formation. Remarkable
synthetic applications are highlighted.
1 Introduction
2 3,4-Dihydropyrans
3 3,4-Dihydro-1,4-oxazines
4 3,6-Dihydropyrans
5 Synthetic Applications
6 Summary

Key words allenols, bis-homopropargyl alcohols, catalysis, cycliza-
tions, heterocyclizations, 1,4-oxazines, pyrans, transition metals

1 Introduction

Heterocyclic structures, particularly six-membered ox-
ygenated derivatives, i.e. pyrans, are prevalent units found
in a wide variety of simple and sophisticated bioactive nat-
ural products.1 Over the years a great deal of effort has been
devoted to these important synthetic challenges, and the
metal-catalyzed intramolecular addition of oxygenated nu-
cleophiles across unsaturated carbon–carbon bonds is one
of the most outstanding methods.2 This short review focus-
es on recent progress in metal-catalyzed intramolecular cy-
clizations to 3,4- and 3,6-dihydropyrans (3,4-DHP and 3,6-
DHP). These compounds are useful precursors for tetrahy-
dropyrans3 and glycals,4 which are typical building blocks

for carbohydrate chemistry,5 and 3,4-dihydro-1,4-oxazines,
which are versatile heterocyclic motifs present in many
natural products and pharmaceuticals6 (Scheme 1). Exam-
ples involving the synthesis of benzofused derivatives (i.e.,
chromanes7 and benzoxazines8) have also been reported,
but they are not discussed here.
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Scheme 1  Structures of 2H-pyran, 3,4-dihydro-2H-pyran, 3,6-dihydro-
2H-pyran, and 3,4-dihydro-2H-1,4-oxazine

2 3,4-Dihydropyrans

3,4-Dihydropyran heterocyclic structures are readily
available from metal-catalyzed intramolecular alkoxyl-
ations of terminal 4-alkyn-1-ol derivatives (M = W, Ru, Rh).9
The cyclization involves the formation of a metal vinylidene
intermediate from the alkynol, an electrophilic species at
its α carbene carbon, and subsequent trapping with the nu-
cleophilic hydroxyl group (Scheme 2). Hence, the cycliza-
tion process can be considered as an anti-Markovnikov ad-
dition of the alcohol to the alkyne (endo cyclization).

Scheme 2  Formation of 3,4-dihydropyrans by intramolecular addition 
of alcohols to metal vinylidenes from 4-alkyn-1-ols

McDonald and co-workers carried out their seminal
work on cyclizations of highly functionalized terminal 4-
alkyn-1-ol derivatives to 3,4-dihydropyrans with catalytic
W(CO6) complexes under photolytic conditions in the pres-
ence of tertiary amines (Scheme 3).10

Scheme 3  Tungsten-catalyzed formation of 3,4-dihydropyrans from 
bis-homopropargylic alcohols

Trost and co-workers later reported that similar cycliza-
tions of bis-homopropargyl alcohols to 3,4-dihydropyrans
can be performed in the presence of catalytic amounts of
CpRuCl(PAr3)2 complexes that bear the electron-withdraw-
ing ligand tris(4-fluorophenyl)phosphine (Scheme 4).11

Other ruthenium complexes bearing a tetradentate nitro-
gen-phosphorus mixed ligand were also effective catalysts
for the endo cycloisomerization of bis-homopropargyl alco-
hols.12

Scheme 4  Ruthenium-catalyzed formation of 3,4-dihydropyrans from 
bis-homopropargyl alcohols

These cycloisomerization conditions proved to be che-
moselective for O-cyclizations over N-cyclizations. 3,4-Di-
hydropyrans were the only products obtained when 2-ami-
no-4-alkyn-1-ols were exposed to the Ru-catalyzed cy-
cloisomerization conditions (Scheme 5).13

Scheme 5  Chemoselectivity of the ruthenium-catalyzed formation of 
3,4-dihydropyrans from 2-amino-4-alkyn-1-ols: O- vs N-cyclization

Similar chemoselective cyclizations of 2-amino-4-
alkyn-1-ols to 3,4-dihydropyrans were also achieved via
rhodium vinylidene intermediates. Wilkinson’s catalysts
with modified electron-poor phosphines as ligands were
able to form rhodium vinylidene intermediates, which were
subsequently trapped by the alcohol (Scheme 6).14

Scheme 6  Rhodium-catalyzed formation of 3,4-dihydropyrans from 
bis-homopropargyl alcohols

Furthermore, the reactivity of the arylpalladium inter-
mediates obtained by oxidative addition of aryl halides to a
Pd(0) catalyst can be tuned in order to control the catalytic
arylative 5-exo and 6-endo cyclization of bis-homopropar-
gyl alcohols.15 For instance, substrates bearing an ynamide
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moiety in the presence of Pd(0) catalyst and Xantphos as li-
gands mainly afforded 5,6-disubstituted 3,4-dihydropy-
rans, i.e., the product of 6-endo cyclization (Scheme 7).

Scheme 7  Palladium-catalyzed 6-endo arylative cyclization of bis-ho-
mopropargyl alcohols to 5,6-disubstituted 3,4-dihydropyrans

In contrast, conjugated enynoates with a hydroxyl teth-
er undergo intramolecular 6-endo-dig cyclizations to give
3,4-dihydropyrans in moderate to good yields (Scheme 8).16

Addition of the hydroxyl group to the metal-coordinated
alkyne followed by protonolysis is the accepted mechanistic
pathway for the cyclization process. Interestingly, substitut-
ed 3,4-dihydropyrans can be synthesized in one pot by a
tandem Pd-catalyzed intermolecular-intramolecular pro-
cess that involves an alkynoate/alkyne coupling to give a
conjugated enynoate followed by cyclization in the pres-
ence of catalytic Pd(OAc)2 and TDMPP [tris(2,6-dimethoxy-
phenyl)phosphine].

Scheme 8  Palladium-catalyzed formation of 3,4-dihydropyrans by 
alkyne/alkynoate coupling followed by cyclization

A novel Pd(II)-catalyzed oxy-carbopalladation (Wacker–
Heck) process with β-hydroxy-ynones also provided access
to highly functionalized 2,3-dihydropyran-4-ones featuring
an interesting dienic system (Scheme 9).17

Alternatively, 2,3-dihydropyran-4-ones can be prepared
in moderate to good yields by an intramolecular palladi-
um(II)-mediated oxidative cyclization of β-hydroxy-enones
(Scheme 10).18

Scheme 10  Palladium(II)-mediated oxidative cyclization of β-hydroxy-
enones to 2,3-dihydropyran-4-ones

A novel cyclization of alkynals and alkynones to 2-vinyl-
3,4-dihydropyrans has recently been described.19 The mild
process probably takes place by trapping of the electrophil-
ic vinyl ruthenium carbene [generated in situ by treatment
of catalytic amounts of Cp*RuCl(cod) with alkynals/
alkynones and (trimethylsilyl)diazomethane] with O-nuc-
leophiles from the carbonyl functionalities (Scheme 11).

Scheme 11  Ruthenium-catalyzed heterocyclization of alkynals to 2-vi-
nyl-3,4-dihydropyrans

The diastereoselectivity of the reaction was further
evaluated by using 3-monosubstituted alkynals as starting
materials. Alkynals bearing methoxycarbonyl, benzyl-
oxymethyl, and acetoxymethyl substituents gave the corre-
sponding 2-vinyl-3,4-dihydropyrans as single cis diastereo-
mers (Scheme 12). However, alkynals bearing bulkier 3-si-
loxy substituents gave lower diastereoselectivity during the
heterocyclization process.

6-Substituted 2-vinyl-3,4-dihydropyrans could be ob-
tained by ruthenium-catalyzed heterocyclization of
alkynones (Scheme 13). The heterocyclization of 3-mono-
substituted alkynones showed complete diastereoselectivi-
ty to give the cis 2,4,6-trisubstituted 2-vinyl-3,4-dihydro-
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pyrans. Enantiomerically pure dihydropyrans could be ob-
tained by starting from (R)-3-(tert-butylsiloxy)alkynones
(Scheme 13).

In addition, enantiomerically enriched 3,4-dihydropy-
rans are readily available by the molybdenum-catalyzed
ring-closing metathesis of enol ethers.20 The chiral Mo–al-
kylidene complexes efficiently undergo the dissymmetrical

process in achiral enol ethers by asymmetric ring-closing
metathesis to give 3,4-dihydropyrans with up to 94% ee
(Scheme 14).

The diastereoselective synthesis of multifunctional 3,4-
dihydropyran derivatives was accomplished by a novel con-
vergent radical cyclization of an aldehyde with two alkenes
catalyzed by FeCl2.21 Iron-catalyzed redox radical recombi-
nations are the processes proposed for the formation of the
3,4-dihydropyran skeleton (Scheme 15).

Scheme 15  Iron-catalyzed redox radical diastereoselective formation 
of polyfunctionalized 3,4-dihydropyrans

3 3,4-Dihydro-1,4-oxazines

2-Vinyl-3,4-dihydro-2H-1,4-oxazines are pivotal struc-
tures to access therapeutic agents.22 These compounds can
be synthesized by Ru-catalyzed heterocyclization of N-teth-
ered alkynals and alkynones under the same catalytic con-
ditions used for 2-vinyl-3,4-dihydropyrans (Scheme 11),
but in this case in diethyl ether (Scheme 16).19

Similarly, 2-methylene-3,4-dihydro-1,4-oxazines can be
accessed by a cooperative Rh(II)/Brønsted acid and Au(I)-
catalyzed ‘formal’ [3+3] annulation of enal diazo ketones
with N-propargylanilines (Scheme 17).23 The reaction prob-
ably takes place through the 6-exo heterocyclization of a
gold-activated N-tethered alkynone generated in situ by
the Rh-catalyzed reaction of enal diazo ketones with N-
propargylanilines (Scheme 17).

Scheme 12  Diastereoselectivity of the ruthenium-catalyzed heterocy-
clization of 3-monosubstituted alkynals to 2-vinyl-3,4-dihydropyrans
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Scheme 17  3,4-Dihydro-1,4-oxazines by the cooperative Rh(II)/ 
Brønsted acid and Au(I)-catalyzed [3+3] annulation of enal diazo ke-
tones with N-propargyl anilines

Rh-catalyzed transannulation of N-sulfonyl-1,2,3-tri-
azoles and epoxides gives rise to 3,4-dihydro-1,4-oxazines
in a regioselective manner (Scheme 18).24 The mechanism
probably involves the initial generation of an α-imino rho-
dium(II) carbene species from the triazole followed by a
‘formal’ [3+3] cycloaddition with the epoxide.

Scheme 18  Rh-catalyzed transannulation of N-sulfonyl-1,2,3-triazoles 
and epoxides to 3,4-dihydro-1,4-oxazines

Alternatively, 3,4-dihydro-1,4-oxazines can be obtained
directly by intramolecular hydroamination of alkynes.
When oxygen-tethered non-activated alkynamines
were reacted in the presence of the zinc-based catalyst
[N-isopropyl-2-(isopropylamino)troponiminato]methylzinc
[{(iPr)2ATI}-ZnMe], smooth heterocyclization occurred to

give the corresponding 3,4-dihydro-1,4-oxazines by an in-
tramolecular hydroamination (Scheme 19).25

4 3,6-Dihydropyrans

Catalytic asymmetric Wacker-type cyclization of alke-
nyl alcohols promoted by the Pd-SPRIX catalyst afforded
3,6-dihydropyrans through a 6-endo nucleophilic attack of
the hydroxyl group to the metal-activated olefin. The use of
a trisubstituted double bond ensured the exclusive forma-
tion of the 3,6-dihydropyran isomer by β-hydride elimina-
tion of the Pd complex intermediate (Scheme 20).26

Scheme 20  Palladium-catalyzed asymmetric Wacker-type cyclization 
of alkenyl alcohols to 3,6-dihydropyrans

Allenols are also useful starting materials for the syn-
thesis of simple and chiral 3,6-dihydropyrans. Electrophilic
activation of the allene by Au(I) or Au(III) catalysts in chiral
3-allenols afforded 3,6-dihydropyrans through a 6-endo cy-
cloisomerization with axis-to-center chirality transfer
(Scheme 21, eq. 1).27 Similarly, 3-hydroxy-1,5-allenynes
were chemoselectively transformed into the corresponding
2-ethynyl-3,6-dihydropyrans by preferential Au(I)-cata-
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lyzed activation of the allene over the alkyne functionality
(Scheme 21, eq. 2). Interestingly, reverse chemoselectivity
can be achieved using a platinum catalyst.28

Enantiopure 3,6-dihydropyrans could also be prepared
by chemo-, regio-, and stereocontrolled Au(III)-, Pt(II)-, or
Pd(II)-catalyzed 6-endo cyclization of β-allenols and β,γ-al-
lenediols derived from D-glyceraldehyde.29 In all cases the
metal-catalyzed 6-endo cycloisomerization is initiated by
chemo- and regiospecific attack of the secondary hydroxyl
group at the terminal allene carbon atom of β,γ-allenediols
to give the corresponding 3,6-dihydropyran (Scheme 22).
Moreover, tandem Pd- and Pt-catalyzed cyclization/cou-
pling reactions of 3-allenols with allyl bromide and ylides
gave rise to enantiopure functionalized tri- and tetrasubsti-
tuted 3,6-dihydropyrans (Scheme 22).29b

Bicyclic 3,6-dihydropyrans (4,6-dihydrofuro[3,4-
c]pyrans) can be accessed from substituted dipropargyl
ethers by means of two consecutive carbopalladations initi-
ated by a ‘formal’ anti-carbopalladation of a non-activated
alkyne. The second carbopalladation step involves the for-
mation of the dihydropyran ring (Scheme 23).30 Mechanis-
tically, when tertiary propargylic alcohols were mixed with
aryl iodides in the presence of Pd(II) catalysts, syn-car-
bopalladation occurred and the Pd was placed α to the oxy-
gen. If no other reaction pathways are available (e.g., β-hy-

drogens are not present), cis–trans isomerization of the
transient vinyl Pd complex will occur to give the second
carbopalladation on the remaining alkyne.

When substituted propargyl allyl ethers are used as
substrates (tertiary propargylic ω-enynols), the cyclization
process that leads to 3,6-dihydropyrans would involve a
‘formal’ anti-carbopalladation followed by Mizoroki–Heck
reaction (Scheme 24). Interestingly, the geometry of the
double bond in the final product is dependent on the geom-
etry of the starting substrate, which would exclude carbo-
cationic intermediates as these would lead to E/Z mixtures.

Scheme 24  3-Benzylidene 3,6-dihydropyrans by tandem ‘formal’ anti-
carbopalladation followed by Mizoroki–Heck reactions

Scheme 22  Chemo-, regio-, and stereocontrolled metal-catalyzed formation of enantiopure 3,6-dihydropyrans from β,γ-allenediols
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5 Synthetic Applications

As stated in the Introduction, pyran structures and,
more specifically, 3,4- and 3,6-dihydropyrans are relevant
units found in many bioactive natural products. In this sec-
tion, remarkable synthetic approaches are briefly men-
tioned to highlight the synthetic method used. For the as-
sembly of ring A of miyakolide, a macrolide isolated from a
sponge of the genus Polyfibrospongia, Pd-catalyzed tandem
alkynoate/alkyne coupling followed by 6-endo cyclization
was selected to obtain the exomethylene-3,4-dihydropyran
precursor (Scheme 25).16 The bioassay results for the mac-
rolide showed potent in vitro and in vivo antitumor activity

against A-549 human lung carcinoma and B-16 melanoma,
respectively.31

The same methodology was used to assemble ring C in
the synthetic approach to bryostatins, a family of structur-
ally complicated macrolides that exhibit an exceptional
range of biological activities (Scheme 26).32

For the synthesis of ring E of several indole alkaloids
such as (+)-6-oxoalstophylline, (–)-alstophylline, and (–)-
alstonerine, a modified Pd-catalyzed Wacker sequence was
applied to generate rapidly the cis-fused 3,4-dihydropyra-
nyl enone (Scheme 27).33 For more details of the oxidative
Wacker cyclization see the comments and details in
Scheme 9.

Scheme 27  Formation of the cis-fused 3,4-dihydropyranyl ring of in-
dole alkaloids by palladium oxidative cyclization

Bejarol metabolites are terpenoids that are found in
plants of S. oblongifolia and they contain a substituted 3,6-
dihydropyran ring with three stereocenters. The first dia-
stereo- and enantioselective total synthesis of (3R,5R,9R)-
bejarol and its (3R,5S,9R)-isomer was accomplished using
the Au-catalyzed 6-endo-cyclization of an enantiomerically
pure β-allenol as the key step (Scheme 28).34

Scheme 25  Retrosynthetic plan for the formation or ring A of miyako-
lide
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6 Summary

Partially hydrogenated pyran derivatives, 3,4- and 3,6-
dihydropyrans, and 3,4-dihydro-1,4-oxazines are key syn-
thetic precursors for scaffolds present in numerous natural
products with relevant biological activities. Metal-cata-
lyzed intramolecular cyclizations are highly effective for
the synthesis of these heterocyclic systems. In the examples
discussed, the formation of an electrophilic species by acti-
vation of the alkyne functionality (vinylidenes, vinyl car-
benes, etc.) of bis-homopropargyl alcohol and derivatives
with metals (W, Rh, Ru, Pd) followed by trapping with oxy-
gen nucleophiles (heterocyclizations) has been the main
approach to obtain the 3,4-dihydropyran nucleus. Neutral
processes (ring-closing metathesis) and redox radical cy-
clizations with carbon–carbon and carbon–oxygen bond
formation, respectively, represent attractive synthetic ap-
proaches to achieve the stereoselective formation of 3,4-di-
hydropyrans. Analogously, the 3,4-dihydro-1,4-oxazine nu-
cleus can be obtained by electrophilic activation of alkynes
in N-tethered alkynals or oxygen-tethered alkynamines fol-
lowed by trapping with oxygen or nitrogen (hydroamina-
tion) nucleophiles, respectively. Similarly, electrophilic acti-
vation of alkenyl alcohols and allenols followed by intramo-
lecular nucleophilic trapping allows the stereoselective
formation of 3,6-dihydropyrans. Substituted mono- and bi-
cyclic 3-benzylidene-3,6-dihydropyrans could be assem-
bled by two consecutive carbopalladations (carbon–carbon
bond formation). Remarkable applications in the synthesis
of natural products are highlighted. We believe that further
novel protocols will be developed in the future and that
these will enable the synthesis of structurally challenging
and bioactive natural products.
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