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Abstract
We have studied the effect of the pelletization pressure on microstructural and electrical transport properties of supercon-
ducting ceramics with starting composition given by the formula Bi

1.65
Pb

0.35
Sr

2
Ca

2.5
Cu

3.5
O

10+�
 . The experimental data 

of electrical measurements was processed in order to obtain the weak-link resistivity, the orientation probability of the 
grains’ a-axes along a certain preferential direction, the slope of the linear part in the temperature dependence of the ab-
planes resistivity, and the intrinsic effective anisotropy of the grains, of each sample. In contrast with the behaviour of 
Bi

1.65
Pb

0.35
Sr

2
Ca

2
Cu

3
O

10+�
 ceramics, the Ca, Cu enriched samples exhibit a reduction of their effective anisotropy at sample 

level and weak links resistivity with increasing compacting pressures. In addition, a compacting pressure of around 488 MPa 
may affect considerably the electrical and structural parameters of the material. The results suggest that a combined effect of 
the pelletization pressure and the doping with Ca and Cu can be used to improve the electrical transport properties of these 
materials for technological applications.

1 Introduction

The search of new superconducting compounds continue 
to be active areas of the superconductivity with fundamen-
tal and applied goals [1–5]. A prominent feature of sev-
eral superconductors for large scale applications is their 
polycrystalline structure [1, 5–9]. Within this context, two 
essential issues should be taken into consideration when 
the performance of high critical temperature superconduc-
tors (HTS) is evaluated. One is the intergrain weak links 
related with the low texture [5], porosity and the presence 

of spurious phases [5]. The other is the intragranular flux 
pinning [1], which is rather low in several HTS, because of 
their layered structure and high anisotropy [1].

A large body of research of the properties of 
Bi1.65Pb0.35Sr2Ca2Cu3O10+� (Bi,Pb)2223 ceramic and the 
materials based on it shows that some impurity phases, 
which are almost inevitable found in such multicomponent 
system can favourably influence the superconducting proper-
ties of these materials [10].

Previous investigations show that an excess of Ca and Cu 
in the initial nominal composition affects the (Bi,Pb)2223 
phase growth and the intergranular coupling in (Bi,Pb)2223 
ceramics [11]. Using this modification technique, the 
excess of Ca and Cu separates out as the Ca2CuO3 com-
pound is located between the (Bi,Pb)2223 crystallites pro-
viding the connection, which in turn is beneficial to the 
electrophysical properties both in normal and supercon-
ducting states [11, 12]. The best electrophysical proper-
ties are observed in the ceramic of nominal composition 
Bi1.8Pb0.3Sr1.9Ca2+2xCu3+xOn (x = 0.4) [11]. Introducing 
excess quantities of Ca and Cu by doping pure (Bi,Pb)2223 
with calcium cuprate leads to a gradual deterioration of the 
electrophysical properties in the normal state [11]. In the 
superconducting state the properties are almost independent 
of the quantity of introduced Ca2CuO3 . This indicates that 
the formation of connections occurs in the phase growth 
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stage [11]. On the whole, all Ca, Cu enriched (Bi,Pb)2223 
samples have higher critical temperature and current density 
than those of pure (Bi,Pb)2223 for all values of x from 0.2 
to 1.0 [11].

By using an Effective Medium Approximation model [13] 
applied to electric transport measurements of (Bi,Pb)2223 
polycrystals, the effective anisotropy of the grains, 
t = �c∕�ab, their orientation probability, �xa, the weak links 
resistivity, �wl, and the slope of the temperature depend-
ence of the grains’ resistivity, Aab = ��ab∕�T  can be deter-
mined, where �c, �ab and T are the out-of-plane resistivity, 
the in-plane resistivity and the temperature of the samples, 
respectively [14]. These recent results for superconducting 
polycrystals, show that high compacting pressures affect not 
only the intergranular, but also the intragranular transport 
properties by increasing the density of defects and reduc-
ing the effective anisotropy of the grains [15–17]. A similar 
procedure with Effective Medium Approach may be applied 
to study the behaviour of the conductance in disordered or 
not disordered graphene [18].

In this paper we have studied the effect of the pelletiza-
tion pressure on the crystallite size and electrical transport 
properties of superconducting ceramics with starting com-
position given by the formula Bi1.65Pb0.35Sr2Ca2.5Cu3.5O10+� . 
The experimental data of electrical measurements were 
processed in order to obtain the weak-link resistivity, �wl, 
the orientation probability of the grains’ a-axes along a cer-
tain preferential direction, �xa, the slope of the linear part 
in the temperature dependence of the ab-planes resistivity, 
Aab = ��ab∕�T , and the intrinsic effective anisotropies, 
t = �c∕�ab of each sample following the method described 
in reference [15] (see Appendix). Here, �ab, �c and T are 
the main values of the grain’s resistivitity tensor and the 
measurement temperature, respectively. In contrast with the 
behaviour of (Bi,Pb)2223 ceramics, the Ca, Cu enriched 
samples exhibit a reduction of their anisotropy, � = �z∕�x, 
and weak links resistivity, �wl, with increasing compacting 
pressures. We found that a compacting pressure of around 
488 MPa may affect considerably the electrical and struc-
tural parameters of the material, which is observed in the 
obtained results for t, �ab, unit cell volume and the residual 
strain percentage, �, respectively.

2  Experimental details

Bi1.65Pb0.35Sr2Ca2.5Cu3.5O10+� polycrystalline samples were 
prepared from powders of Bi2O3, PbO, SrCO3, CaCO3, 
and CuO which were mixed in the atomic ratios of 
Pb:Bi:Sr:Ca:Cu (0.35:1.65:2:2.5:3.5). The mixture was 
first calcined in air at 750 ◦ C for 40 h. After that, the 
powder was reground and pressed into pellets of 8 mm in 
diameter and 2 mm in thickness at a pressure of 196 MPa. 

These pellets were heat treated at 800 ◦ C in air for 40 h. 
Subsequently, the samples were reground, pressed again, 
and treated in air for 40 h at 826 ◦ C. This step was repeated 
two more times, as described elsewhere [19]. Finally, the 
pellets were reground and pressed at three different uni-
axial compacting pressures to obtain cylindrical samples 
with dimensions of 8 mm in diameter and 5 mm in height. 
The compacting pressures were 230, 488 and 780 MPa for 
the GD2P1, GD2P2 and GD2P3 samples, respectively. The 
last heat treatment of the pellets was performed in air for 
40 h at 826 ◦ C, followed by slow cooling.

The densities of the three samples compacted at differ-
ent pressures were determined by mass to volume ratios. 
The volumes were determined considering the pellets as 
cylinders and determining their dimensions with a res-
olution of 0.05 mm. The masses were measured with a 
digital balance with resolution of 0.1 mg. With the result-
ing density and the structural one, which in the cases of 
(Bi,Pb)2223, Bi1.65Pb0.35Sr2CaCu2O8+� ((Bi,Pb)2212) 
and Bi1.65Pb0.35Sr2Cu1O8+� ((Bi,Pb)2201) are ∼6.3 g/cm3 
[20–22], ∼6.7 g/cm3 [22] and ∼7.2 g/cm3 [22], respectively, 
the volume fraction of pores and insulating phases, p was 
estimated.

The microstructure of the samples was studied by 
means of Scanning Electron Microscopy (SEM) of frac-
tured surfaces. The study was performed with a micro-
scope model Hitachi S-530, which has nominal resolution 
of ∼ 30–40 nm operating within an interval of 15–20 kV. 
The platelet shape of grains typical in Bi-2223 phase is 
observed in all samples.

We have evaluated the phase identification in powder 
samples and the degree of texture in bulk samples by means 
of X-ray diffraction patterns. The powders were obtained 
from the three samples after the last heat treatment, grind-
ing a piece taken from each pellet. The X-ray diffraction 
patterns were obtained in a Bruker-AXS D8 Advance dif-
fractometer. These measurements were performed at room 
temperature using Cu K � radiation in the 3◦ ≤ 2 � ≤ 60◦ 
range with a 0.02◦(2�) step size and 100 s per step. The 
Standard Reference Material 640c (SRM) consists of SiO 
powder. The measurement of the SRM was accomplished at 
the same previous conditions, but within an angle range of 
27◦ ≤ 2� ≤ 90◦ . From the X-ray diffraction patterns taken on 
pellet samples, the texture of three specimens was evaluated 
by means of the Lotgering factors [23]. In addition, esti-
mates of the crystallites size, residual strains, lattice param-
eters and unit-cell volumes were performed throught profile 
fitting of the X-ray patterns of the three powder samples.

In order to measure the temperature dependence of the 
electrical resistivity tensor and its components in the para-
coherent state, the samples were cut from the pellets in slab 
form, as showed in Fig. 1. The dimensions of the three cut 
samples are displayed in Table 1.
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Electrical contacts were prepared using silver paint with 
a heat treatment at 730 ◦C for 20 min, these were as small 
as possible in order to minimize their effects on the voltage 
measurements. The contact size was about 10% of the block 
dimensions. Before each measurement, the samples were 
cooled from room temperature down to ≈ 80 K. The excita-
tion current was injected according to the Levin-Gonzalez 
method (LGM) as shown in Appendix 2 6 [15, 24, 25]. Both 
the voltage across the sample and its temperature were col-
lected while the temperature was raised slowly to 300 K 
for the case of the temperature dependence of the electrical 
resistivity tensor.

Regarding the measurements of the resistivity tensor 
components in the paracoherent state, in which the dissipa-
tion is mainly intergranular [26], the samples were cooled 
down to 103 K and the I − V  curve was taken. It was trans-
formed into a resistivity versus current density curve starting 
from which the paracoherent resistivity tensor component 
was determined by taking the resistivity value at the point 
where the slope of the � − J curve starts to decrease. With 
this selection of the level of paracoherent resistivity we are 
avoiding the “contamination” of the measurements due to 
the presence of intragranular dissipation sources [14, 15].

In both types of measurements described before, six elec-
trical contacts were placed on the samples according to the 
LGM [15]. The two components of the electrical resistivity 
tensor �x and �z were calculated from these measurements 
and the dimensions of the sample through the equations 24 
and 25 see Appendix 1 2 6 [15].

3  Results and discussion

The diagram displayed in Fig. 2 sketches the procedure we 
will follow to get information from our samples. In subsec-
tion 3.4, we describe the measurements resulting in the dif-
ferent input parameters indicated at the top of the diagram 
(see results in Table 6). And we describe too, how the model 
works to obtain the parameters shown at the bottom of Fig. 2 
(see results in Table 7), and then we compare them back with 
the experiment.

3.1  X‑ray diffraction patterns analysis

Fig. 3 displays the X-ray diffraction patterns taken on pow-
der and pellet samples extracted from GD2P1, GD2P2 and 
GD2P3 samples.

As an example, we show the calculations for the rela-
tive volume fractions of the high-Tc (Bi,Pb)2223 phase, fH , 
which is calculated based on the following equation [7, 27, 
28]:

Here, IH(hkl), IL1(hkl), IL2(hkl), IE1(hkl)
 and IE2(hkl)

 are the inten-
sities of the (hkl) diffraction lines for high-Tc, low-Tc 
((Bi,Pb)2212), low-Tc ((Bi,Pb)2201), Ca2PbO4 and Ca2CuO3 
phases, respectively. The volume fractions of the phases are 
showed in Table 2 for the three samples.

Also, we have used the X-ray diffraction patterns shown 
in Fig. 3a–f, to evaluate the sample texture by means of the 

(1)

fH =
�IH(hkl)

�IH(hkl) + �IL1(hkl) + �IL2(hkl) + �IE1(hkl)
+ �IE2(hkl)

Fig. 1  Slab extracted from a pellet to be measured using the Levin-
Gonzalez method

Table 1  Dimensions of the samples

Sample L (cm) b (cm) D (cm)

GD2P1 0.602 0.227 0.056
GD2P2 0.574 0.262 0.096
GD2P3 0.690 0.244 0.094

Fig. 2  Diagram of the method to separate the intra and intergranular 
parameters starting from microstructural and electrical transport char-
acterizations (taken from Ref. [15])
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Lotgering factors calculated for the (00l) peaks. They were 
calculated by means of the formula [23, 29]:

where,

Here, I refers to the X-ray peak intensity; N is the sum of the 
integrated intensities for all (00l) reflections divided by the 
sum of all intensities of (hkl) in the textured specimen. P0 is 
an equivalent parameter for a random specimen taken from 
the powder sample. A seemingly contradictory result was 
obtained. The Lotgering factor of the samples is almost the 
same for the samples obtained at different uniaxially com-
pacting pressures as shown in Table  2. A possible explana-
tion of this behaviour is given in reference [15].

(2)F = (N − N0)∕(1 − N0),

(3)N =
∑
l

I(00l)∕
∑
hkl

I(hkl).

Finally, an important feature of the X-ray diffrac-
tion patterns to be mentioned here, is the presence of 
the (008) peak corresponding to the low Tc (Bi,Pb)2212 
phase in the three pellet samples, but it is almost absent 
in the powder ones. So, everything indicates that a thin 
layer of this phase is covering the compaction surface of 
the sample on which the X-rays were reflected. Similar 
results were obtained in samples with starting composition 
Bi1.65Pb0.35Sr2Ca2Cu3O10+� [15].

As we will see in the subsection 3.4 these main micro-
structural features of the pellets samples have a fingerprint 
in the electrical transport measurements.

(a) (b)

(c) (d)

(e) (f)

Fig. 3  X-ray diffraction patterns of powder and pellet sam-
ples. The reflections belonging to the (Bi,Pb)2223, (Bi,Pb)2212, 
(Bi,Pb)2201, Ca

2
PbO

4
 and Ca

2
CuO

3
 phases are marked by “H”, “L”, 

“(Bi,Pb)2201”, “ Ca
2
PbO

4
 ” and “ Ca

2
CuO

3
 ”, respectively. The main 

peaks display their Miller’s indexes

Table 2  Volume fractions of the 
phases and lotgering factors FL

Sample (Bi,Pb)2223 (Bi,Pb)2212 (Bi,Pb)2201 Ca
2
PbO

4
Ca

2
CuO

3
FL

Vol % Vol % Vol % Vol % Vol %

GD2P1 85.33 4.57 1.84 3.40 4.86 0.41
GD2P2 81.57 5.40 2.07 4.59 6.37 0.43
GD2P3 79.13 4.62 3.79 6.35 6.11 0.42
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3.2  Profile fitting of the X‑ray powder diffraction

The XRD peak profiles of (Bi,Pb)2223, (Bi,Pb)2212, 
(Bi,Pb)2201, Ca2PbO4 and Ca2CuO3 (see Table 3) were ana-
lysed by the free Rietveld refinement software FullProf-2000 
version June-2015. With this software, the lattice strain can 
be evaluated from refined profile parameters when a pseudo-
Voigt function of Thompson-Cox-Hastings (TCH) is chosen 
to express peak profiles [30]. In this function, the Full Width 
at Half Maximum (FWHM) of the Gaussian and Lorentzian 
parts, HG and HL, respectively, are expressed as follows [31]:

where HG is the Gaussian full width at half maximum, modi-
fied by an additional broadening parameter, P; � is the Bragg 
angle; V and W in the Gaussian part are parameters depend-
ing on the instrument; HL is the Lorentzian full width at 
half maximum, which accounts for the anisotropic FWHM 
behavior by introducing two anisotropic broadening param-
eters, Ya (crystallite size) and Xa (strain), and � is the angle 
between a common anisotropy axis and the corresponding 
reciprocal lattice vector; in the Lorentzian part, Y is a param-
eter for isotropic crystallite-size effect; U and X are isotropic 
strain parameters [32]. On the other hand, the profile fitting 
results indicated only isotropic parameters, for that reason 
anisotropic broadening parameters are equal to zero ( Xa = 0 
and Ya = 0 ). In this case, the crystallite size from Gauss-
ian and Lorentzian parts, �G and �L , respectively, can be 
obtained as follows [32]:

and the lattice strain from Gaussian and Lorentzian parts, �G 
and �L, respectively, were evaluated by the following equa-
tions [32]:

(4)HG =[8 ln 2(U tan2 � + V tan � +W + P sec2 �)]1∕2

(5)HL =(Y − Ya cos�) sec � + (X − Xa cos�) tan �

(6)�G(Å) =
180K�

�

√
P

(7)�L(Å) =
180K�

�Y

(8)�G(%) =
�

1.8
[8 ln 2(U − Uins)]

1∕2

where K is the Sherrer constant, with typical value of 0.9; 
� is the X-ray wavelength; and Uins and Xins are instrument 
contributions, which are evaluated from peak profiles of a 
reference sample (in this case, SiO).

The reliability of the refinement is shown by the values 
of the fit parameters, S = Rwp∕Re, where Rwp is the weighed 
sum of residuals of the least squares fit; and Re is the value 
statistically expected (see values in Fig. 4). If S = 1 the 
refinement is perfect [33]. However, for values between 
0.62 ≤ S ≤ 1.3 the refinement is considered satisfactory 
[32].

FullProf-2000, version June-2015 has included the pre-
vious equations in the calculation methods and accepts 
several phases to be refined. We refined five phases (see 
Table 3) and 21 parameters simultaneously in a maximum. 
We referred to [11, 22, 33–36] for the crystallographic data 
of the phases, such as space group and lattice parameters at 
room temperature. V, W and peak-shift parameters related to 
instrument and sample displacement were previously refined 
using a SiO reference sample. In the analysis, we refined 
the scale factor s; zero-shift Z0 ; lattice parameters a, b and 
c; preferred-orientation parameter r; and profile parameters 
U, Y and P. We fixed the parameters of crystallite structure, 
atomic positions and site occupancies at room temperature.

For the (Bi,Pb)2223 phase, the unit-cell parameters were 
calculated assuming an orthorhombic unit cell and the 
obtained values shown in Table 4 are in excellent agree-
ment with those reported for the same compound elsewhere 
[7, 37]. However, an appreciable decrease in the a parameter 
of the sample GD2P2 is observed. This change provokes a 
decrease in the volume of the cell as compared with the other 
two samples. Also an appreciable change in � is observed. 
We will analyse the influence of this structural change on the 
electrical transport properties in section 3.4.

3.3  Micro‑structural analysis

Table 5 displays a summary of the microstructural prop-
erties of the three samples studied in this paper. The den-
sities of the samples substantially increase with increas-
ing pressures and as a result an appreciable reduction of 
the volume fraction of pores and insulating phases is 
observed. Here, p = (Vp + Vnp)∕VT , where VT ,Vp and Vnp 
are the volumes of samples, pores and non-conductivity 
phases, respectively. Finally, p parameters were obtained 
by means of p = 1 − [dr(fH∕dH + fL1∕dL1 + fL2∕dL2)], 
here dr is the experimental density, fH , fL1, fL2 are the rela-
tive volume fraction of the high-Tc (Bi,Pb)2223, low-Tc 
(Bi,Pb)2212 and low-Tc (Bi,Pb)2201 phases, respectively, 
dH ≈ 6.3 g/cm3, dL1 ≈ 6.7 g/cm3 and dL2 ≈ 7.2 g/cm3 are the 

(9)�L(%) =
�

1.8
(X − Xins)

Table 3  Crystallographic data [22] of the phases used in profile fit-
ting

Phase Group a (Å) b (Å) c (Å)

(Bi,Pb)2223 A2aa 5.3911 5.4003 37.014
(Bi,Pb)2212 A2aa 5.3852 5.4286 30.997
(Bi,Pb)2201 Amaa 5.380 5.250 24.500
Ca

2
PbO

4
Pbam 5.865 9.786 3.330

Ca
2
CuO

3
Immm 3.236 3.761 12.222
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structural densities of (Bi,Pb)2223 [20–22], (Bi,Pb)2212 
[22] and (Bi,Pb) 2201 [22], respectively.

The effect of the compacting pressure has its counterpart 
in the microstructure of these samples. This can be inferred 
from the fracture micrographs of samples GD2P1, GD2P2 
and GD2P3 which are shown in Fig. 5a–c, respectively. In all 
micrographs it is observed that the granular morphology of 
the samples is similar, exhibiting grains with nearly platelet-
like shape. A careful inspection also reveals changes in both 
the grain size and the grain orientation.

The average grain size in the sample GD2P1 was found 
to be La = (6.6 ± 0.4) �m long and as thick as Lc = (0.57 ± 
0.03) �m ; for the sample GD2P2, the grains were found to 
have dimensions La = (5.8 ± 0.3) �m long and Lc = (0.38 
± 0.01) �m thick; in sample GD2P3 the grains have dimen-
sions La = (12.6 ± 0.7) �m long and Lc = (0.44 ± 0.03) 
�m thick. The ratio La∕Lc, which is referred to as the mean 
aspect ratio of the grains [26], has been found to be very 
sensitive to the applied pressure and was 11.6, 15.3 and 28.6 
for the samples GD2P1, GD2P2 and GD2P3, respectively 
(see Table 5). These values are higher than those of 2.5 and 
4.5 in ceramic samples of YBa2Cu3O7−� [26], but similar to 
those estimated for both (Bi,Pb)2223 superconducting bulk 
samples and tapes [16, 17, 38].

Fig. 4  Profiles fitting of all 
X-ray diffraction patterns of 
powder samples. The reflections 
belonging to the (Bi,Pb)2223, 
(Bi,Pb)2212, (Bi,Pb)2201, 
Ca

2
PbO

4
 and Ca

2
CuO

3
 phases 

are marked by “H”, “L”, 
“(Bi,Pb)2201”, “ Ca

2
PbO

4
 ” and 

“ Ca
2
CuO

3
 ”, respectively. Panels 

a–c show the profiles of the 
samples GD2P1, GD2P2 and 
GD2P3

(a)

(b)

(c)

Table 4  The profile fitting parameters obtained for the (Bi,Pb)2223 
phase. Unit-cell parameters, unit-cell volume, Vuc, crystallite size, �, 
and residual strain percentage, �

Sample GD2P1 GD2P2 GD2P3

a (Å) 5.39 (8) 5.33 (3) 5.39( 8)
b (Å) 5.403 (5) 5.405 (3) 5.404 (5)
c (Å) 37.07 (5) 37.08 (5) 37.08 (9)
Vuc(Å3) 1 081 (5) 1 069 (1) 1 082 (0)
� (Å) 752 (6) 542 (8) 543 (2)
� (%) 3.32 (9) 13.89 (1) 6.10 (7)

Table 5  Mass density, dr, volume fraction of pores and insulating 
phases, p, and shape anisotropy of the grains, La∕Lc

Sample dr [ g∕cm3] p La∕Lc

GD2P1 4.37 0.366 11.6
GD2P2 4.92 0.305 15.3
GD2P3 5.25 0.270 28.6
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3.4  Electrical transport measurements

Let us analyze the results of electrical transport measure-
ments. The experimental values are shown in Table 6. The 
parameters �x(0), �z(0),Ax and Az , are obtained by linear fit-
ting of the curves of electrical resistivity dependence with 
the temperature in the linear region at high temperatures (see 
Fig. 6). Here Ax,Az are the slopes of the electrical resistivity 
and the �x(0), �z(0) the residual electrical resistivity in the 
two principal directions of the sample, respectively.

In Fig. 7 the way of determining the paracoherent resistiv-
ity, �px of each sample is displayed. The �px value is selected 
in the point where the straight line separates from �x − J 
curve (see the Fig. 7). The explanation of this method of 
selection was discussed in detail in [15].

An issue to be highlighted in Table 6 is that the exter-
nal electric anisotropy, � , has a minimum for the sample 
GD2P2 while the values of the orientation factor of the grain 
decreases when the compacting pressure increases from 230 
till 780 MPa. We will return to this aspect later.

Let us apply the model described in reference [15] to our 
sample set (see Appendix 1 5 and diagram in Fig. 2). The 
main results are reported in Table 7. First, we have calcu-
lated the Aab values by using two different expressions Ax�nx 
and Az�nz . However, the difference between the obtained 
values does not exceed 0.5% for each sample. This result is 
supported by the behaviour of � as a function of the tempera-
ture displayed in Fig. 8. It exhibits a very small variation, 2 % 
approximately, when T decreases from 300 K to the super-
conducting transition temperature for both samples. Such a 
behaviour of � is also reflected in the �wl values which are 
very similar in the two main directions of the samples. Thus, 
one obtains � = �nx∕�nz.

However, the obtained Aab values are twice smaller than 
those reported elsewhere for single crystals without Pb dop-
ing [39, 40]. It seems to be that the doping with Pb has a 
great influence in the properties of the crystallites.

Another important issue, to be considered, is that the 
calculated �ab value is greater for the sample compacted at 
higher pressure GD2P3. This sample shows a greater ori-
entation of its grains with the c axes parallel to the z axis 

Fig. 5  Fracture micrographies of the samples obtained by SEM. a 
GD2P1, b GD2P2 and c GD2P3 samples

Table 6  Slopes of electrical resistivity at the sample level, Ax and Az, residual electrical resistivities, �x(0) and �z(0), electrical resistivities at 300 
K, �x and �z for samples GD2P1, GD2P2 and GD2P3

All previous values were obtained in the two principal directions of the sample. In addition, there are shown the external electrical anisotropy, � , 
the paracoherent resistivity in x-direction, �px , and the orientation factor of the grains, fx

Sample Slope Ax Slope Az �x(0) �z(0) �x(300) �z(300) � �px fx

[��⋅cm/K] [��⋅cm/K] [m�⋅cm] [m�⋅cm] [m�⋅cm] [m�⋅cm] (300K) [m�⋅cm]

GD2P1 8.690 261.800 1.023 30.380 3.623 108.702 29.999 0.271 0.265
GD2P2 6.530 45.790 0.905 6.450 2.861 20.166 7.050 0.229 0.253
GD2P3 4.610 70.500 0.462 17.030 1.857 28.364 15.270 0.106 0.230
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as compared to the GD2P1 sample (see Fig. 5). A third 
relevant issue is found when Aab and �wl of the samples 
are compared. There is a systematic decrease in Aab with 
increasing compacting pressures and an abrupt fall in �wl 
when the compacting pressure increases from 488 to 780 

MPa. It very important to note that the sample GD2P2, 
which exhibits an anomalous behaviour in its electri-
cal transport properties obtained experimentally and by 
means of the model (see Appendix 5 and Fig. 2), also has 
clear differences in its unit cell volume and residual strain 
percentage �, as compared to the two other samples. The 
experimental results show that the compacting pressure of 
488 MPa in Ca, Cu enriched samples favors an appreci-
able reduction of the a parameter that is reflected in the 
unit cell volume. A subsequent increase of the compacting 
pressure to 780 MPa restores similar unit cell parameters 
than a compacting pressure of 230 MPa and provokes a 
decrease in � . The structural changes in the sample GD2P2 
seems to be the cause of the abrupt decrease in the external 
anisotropy, �, and the effective anisotropy of the grains t, 
respectively. Moreover, these structural changes could be 
the cause of the small reduction in the orientation prob-
ability of the grains. Nevertheless, more experiments are 
needed to understand the main causes of these changes in 
the structural and electrical transport properties with the 
compacting pressure. Here, we would like to point out that 
these results as compared with those obtained in samples 
with starting composition Bi1.65Pb0.35Sr2Ca2Cu3O10+� [15] 
show changes not only in the effective anisotropy of the 
grains, t, but in Aab and �wl as well. The Ca, Cu enriched 
samples show an improvement in the junctions with a 
reduction of the weak links resistivity of 50 % approxi-
mately, which agrees with the results obtained in reference 
[11].

Another way to verify the model is to compare the 
experimental results of fz direction with those predicted 
by the model. However, the �z(T) dependencies do not go 
completely to zero for temperatures at which the x com-
ponent of the resistivity is already zero as shown in Fig. 9. 
Such effect provokes that the anisotropy factor � of the 
samples increases during the superconducting transition of 
the samples instead of decreasing, as expected. The cause 
of this behaviour is related to the thin layer of (Bi,Pb)2212 
observed in the X-ray diffraction patterns of the pellets 
samples as discussed previously. This film is in parallel 
for the measurements in the x-direction, but in series for 
the z direction, preventing the achievement of the zero 
resistivity in the �z(T) curve. Similar results were obtained 
in reference [15] for sample without Ca, Cu excess.

Fig. 6  Temperature dependencies of the resistivity tensor component, 
�x(T), of the samples GD2P1, GD2P2 and GD0P3. The inset shows 
the temperature dependencies of the resistivity tensor component, 
�z(T), of the same samples. Some physical parameters extracted from 
�i(T) i = x, z curves are displayed in Table 6 and discussed in the text

Fig. 7  The mean current density dependencies of the x-axis resistivity 
component, �x(J) for the samples GD2P1, GD2P2 and GD2P3 meas-
ured at constant temperature T = 103K . The method to determine �px 
is sketched

Table 7  Outputs parameters 
of the model described in 
Appendix 1 and showed in 
Fig. 2

Sample �xa t �nx �nz Aab = Ax�nx 
[ ��⋅cm/K]

Aab = Az�nz 
[ ��⋅cm/K]

�wlx [m�⋅cm] �wlz [m�⋅cm]

GD2P1 0.4432 22 453 0.1336 0.0044 1.161 1.166 0.137 0.135
GD2P2 0.4233 2 197 0.1488 0.0211 0.972 0.967 0.135 0.136
GD2P3 0.4621 2 832 0.1443 0.0094 0.665 0.666 0.067 0.067
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4  Conclusions

We have applied successfully the model described in ref-
erence [15] to estimate inter and intragranular magnitudes 
in samples with starting composition given by the formula 
Bi1.65Pb0.35Sr2Ca2.5Cu3.5O10+�.

The results show that the samples sintered in a Ca, Cu 
enriched environment exhibit a more pronounced modifica-
tion of their intragranular properties with increasing com-
pacting pressures than that observed in samples without 
excess of Ca and Cu [15]. In addition, a decrease of the 
external anisotropy and weak links resistivity is obtained 
with increasing pressures, which could benefit the electrical 
transport performance of this material.

An appreciable change in the unit cell parameter, a, is 
revealed for a compacting pressure of 488 MPa. For this 
sample the external anisotropy, the effective one of the 
grains and the unit cell volume are minimal. Modifications 
of the crystalline structure with the compacting pressure 
have also been reported elsewhere [21], but assuming a 
tetragonal symmetry. In that case an increase of the unit 
cell parameter, c, was observed in samples without excess 
of Ca and Cu.

We have verified the presence of a thin layer of 
(Bi,Pb)2212 at the surface of the samples. This layer pre-
vents that the resistivity along the z direction of the sample, 
�z, goes to zero at the same temperature in which �x vanishes. 
A similar result was obtained for samples without Ca, Cu 
excess [15]. The X-ray diffraction patterns in pellet and pow-
der samples support this statement.

Even when the Lotgering factors, FL and the orientation 
probability of the grains represent, on the whole, different 
magnitudes in our sample set, both obtained values are simi-
lar and greater than 0.4.

Finally, we would like to remark that the obtaining of the 
(Bi-Pb)2223 phase in a Ca, Cu enriched environment may 
improve the properties of this compound for some applica-
tions and simplify its fabrication process. However, it is an 
issue not enough treated in the literature.
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Fig. 8  Anisotropy parameter as a function of the temperature, �(T) , 
for a GD2P1, b GD2P2 and c GD2P3 samples

(a)

(b) (c)

Fig. 9  �i(T) (with i = x, z ) dependencies in the two main directions 
for the three samples studied in this article
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Appendix 1: A model to anisotropic granular 
superconductors

In this Appendix 1 we summarize the main features of the 
model previously published in references [14, 15]. The 
model is based on two main ideas. The goal here is to make 
the article more self-consistent. First, the resistivity of the 
polycrystalline sample can be written as

Eq. (10) expresses that the resistivity of the sample depends 
on the in-plane resistivity of the crystallites plus the resis-
tivity of the Josephson junctions or weak links. This sum 
is amplified by a factor 1∕�n that represents the combined 
effects of the grains’ misalignment and the defects in the pol-
ycystalline sample. Here, �ab = AabT  and �n = f�str where 
�str represents the effects of the defects on the resistivity of 
the sample [26]. When we compare (10) with the linear part 
of experimental dependence �(T),

Aab∕�n = A and �wl∕�n = �(0) are obtained easily [26, 41, 
42].

In the case of a sample with two main directions, 
Eqs. (10) and (11) should be written for each of them [14]. If 
� does not depend on the temperature or has a weak depend-
ence with it, then one may take � = �nx∕�nz where x and z 
are the two main directions of the samples. Here, z is taken 
along the compacting direction and x is perpendicular to it. 
For high Tc superconductors, like YBCO and Bi-based sam-
ples, have a very high intragranular anisotropy parameter in 
the range 102 − 104 [39, 43, 44]

The orientation factor of the grains, fx, has been 
expressed as a function of the orientation probability along 
the x-axis, �xa, the shape anisotropy of the grains, La∕Lc, and 
the intrinsic effective anisotropy of the grains, t, as already 
was reported elsewhere [14]. The calculations are based on 
EMA [13], which constitutes the second pillar of the model: 
here it is assumed the pollicrystalline sample made up of 
two different phases represented by the grains oriented with 
their a or b axes parallel to the x-axis of the sample and those 
with their c axes oriented along the x-axis of the sample, 
respectively. Thus, the orientation probability, �xa, can be 
also interpreted as the probability of finding the first phase 
in the polycrystalline sample.

In this paper we will use a similar description to that 
presented before [14], but modified in some aspects. 
Here, we are including a new phase in the calculations of 
the effective conductivity, which accounts for the pores. 
These will be assumed spherical with conductivity zero, 

(10)� =
1

�n

(�ab + �wl).

(11)� = AT + �(0),

probability of appearance, p, and randomly distributed 
inside the polycrystalline sample. Moreover, all the con-
tributions of the defects to the resistivity of the polycrys-
talline sample will be included in this new phase. Finally, 
in the present approach, the effects of the grains’ disori-
entation and defects are not separated into two factors, but 
contained in the same fraction �n.

In Appendix 1 of the reference [15] the calculations 
to obtain the functions � = F(�, �xa, La∕Lc, p, t) and 
�nx = �nx(�, �xa, La∕Lc, p, t) of the polycrystalline sample 
based on EMA [13, 14] are presented in detail. Notice 
that once having � and �nx it is easy to find �nz since 
�nz = �nx∕�.

Now it is described how the experimental data is pro-
cessed by means of the model.

From the Eq. (10), the tensor resistivity component of 
the paracoherent resistivity along the x-axis is given by 
the equation

Here, t = 1, because the grains are in the superconducting 
state. On the other hand, the extrapolation of the normal-
state resistivity to zero temperature is given by a similar 
expression, but in this case t ≠ 1 if the grains are anisotropic:

The ratio of Eqs. (12) and (13) gives

which was experimentally determined. If we add to the 
Eq. (14) the equation of the anisotropy parameter �, which 
was also experimentally determined

a system of equations with �xa and t as unknown quanti-
ties is obtained. After finding �xa and t it is easy to obtain 
Aab = Ax�nx where �nx is calculated and Ax is experimentally 
determined [15].

As an example of how the model works the dependence 
of �nx and �nz as functions of �xa are shown in reference 
[15]. The variation provoked by a 15 % or 28 % of pores 
is quite small when 0.4 < 𝛾xa < 0.48. The significant dif-
ferences appear in the region of very low and very high 
values of �xa . The values of the intrinsic anisotropy param-
eter and shape anisotropy of the pollycrystalline sample 
were taken similar to those that will be used in this work.

(12)�px =
1

�nx(�, �xa, La∕Lc, p, 1)
(�wlx ).

(13)�x(0) =
1

�nx(�, �xa, La∕Lc, p, t)
(�wlx ).

(14)fx =
�px

�x(0)
=

�nx(�, �xa, La∕Lc, p, t)

�nx(�, �xa, La∕Lc, p, 1)
,

(15)� =
�nx(�, �xa, La∕Lc, p, t)

�nz(�, �xa, La∕Lc, p, t)
,
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Appendix 2: Analytical procedure 
for Levin‑Gonzalez’ method

We have applied the measurement model proposed by 
González et. al. [25] for measuring the different components 
of the resistivity tensor in Bi1.65Pb0.35Sr2Ca2.5Cu3.5O10+� 
polycrystalline superconductors. For the �z experimental 
determination, the current is injected onto the top surface of 
the sample and extracted at the bottom. Two aligned contacts 
recording the voltage are located according to Fig. 10b.

In the quasistatic limit, the expression which satisfies the 
Laplace’s differential equation with the first boundary condi-
tion is [25]:

Hence, the V0 and Vn coefficients can be found through 
the Fourier methods using the last boundary condi-
tion on the transport current applied. Here, we just give 
the explicit coefficients, leaving the detailed develop-
ment for Appendix 1 in reference [25]: V0 = I�z∕bL and 
Vn = −2I∕n�b cosh(n�

√
�zD∕2

√
�xL) . Establishing that the 

voltage signal in a measurement is �V = V(x0,D) − V(x0, 0) 
and taking in account Eq. (16) where it has been substituted 
the V0 and Vn dependence, it can be deduced an expression 
for the measured resistance as a function of the parameters 
of the sample 

√
�x,

√
�z,D, b and L:

where �=�z∕�x . An important point here is that the series for 
Rz is a slowly (conditionally) converging one, which cannot 

(16)

V(x, z) =V0z +
∞�
n=1

Vn cos
�
n�x

L

�
×

× sinh

�
n�

√
�z√

�xL
(D∕2 − z)

�

(17)Rz =
�zD

bL

⎡⎢⎢⎢⎣
1 +

∞�
n=1

4L cos
�

n�x0

L

�
tanh

�
n�

√
�D

2L

�

n�
√
�D

⎤⎥⎥⎥⎦

be truncated for any value of anisotropy 
√
�, large or small. 

This is a common feature of the potential distributions due 
to arrays of charges [45]. A way to solve this problem is to 
separate the slowly converging series of Rz into slowly and 
rapidly converging parts in such a way that would allow 
to carry out the summation of the slowly converging part 
exactly (analytically or numerically). For example, Eq. (17) 
can be rewritten as follows:

where

and

The term Yz(x0) is reported in reference [25] and charac-
terizes the sample’s geometry, but does not depend on the 
resistivity. On the other hand, Sz(

√
�) is a rapidly (expo-

nentially) converging series, which can be truncated and 
therefore lends itself easily to numerical evaluation even for 
relatively small values of anisotropy such that �

√
�D

2L
∼ 1.

The other configuration in which the contacts are located 
on the face perpendicular to the z-axis, as in Fig. 10a, was 
analyzed by reference [24] in the single harmonic approxima-
tion and for a multi-terminal contact configuration. By using 
analogous boundary conditions on the current like in the para-
graphs above, it is easy to show that the final expression for the 
resistance in this configuration is [24]:

where

and

(18)Rz =
4
√
�z�x

b�

�
�
√
�D

4L
+ Yz(x0) + Sz(

√
�)

�

(19)Yz(x0) =
∞∑
n=1

cos(n�x0∕L)

n
= ln

[
2 sin

(
�x0

2L

)]

(20)Sz(
√
�) =

∞�
n=1

cos( n�x0
L

)

n

�
tanh

�
n�

√
�D

2L

�
− 1

�

(21)Rx =
8
√
�z�x

b�

�
Yx(l) + Sx(

√
�)
�

(22)
Yx(l) =

∞∑
n=1

(−1)n−1
cos[�l(2n − 1)∕2L]

2n − 1

=
1

2
ln
[
tan

(
�

4
+

�l

4L

)]

(23)
Sx(

√
�) =

∞�
n=1

(−1)n−1
sin

�
(2n−1)�l

2L

�

2n − 1
×

×

�
coth

�
(2n − 1)�

√
�D

L

�
− 1

�

Fig. 10  Measurement configurations. a Experimental configura-
tion used for the determination of the x-axis effective resistivity, �x . 
b Experimental configuration used in the determination of the z-axis 
effective resistivity, �z
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In reference [24] was reported than even for the samples with 
the lowest anisotropy ( �

√
�D

2L
∼ 1 ) it was sufficient to retain 

only the first three terms, n = 1, 2, 3, to obtain convergence 
of the results better than 0.1% [24]. For that reason in the 
series given to Eqs. (18) and (21) only the first three terms 
will be taken into consideration. From the ratio Rz∕Rx, they 
can be obtained all values of anisotropy 

√
� after solving a 

transcendental equation. The result may be substituted into 
Eqs. (18) and (21) and both resolved later to give the true 
resistivities �x and �z, through the following expressions:

and
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