Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Nb₂O₅ hole blocking layer for hysteresis-free perovskite solar cells

Silvia L. Fernandes ^{a,d,*}, Anna C. Véron ^b, Nilton F.A. Neto ^{c,d}, Frank A. Nüesch ^b, José H. Dias da Silva ^c, Maria A. Zaghete ^a, Carlos F. de O. Graeff ^c

^a UNESP – Chemistry Institute, Biochemistry and Chemistry Department, 14800-060 Araraquara, SP, Brazil

^b Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland

^c UNESP – University of São Paulo State, Physics Department, 17033-360 Bauru, SP, Brazil

^d POSMAT – Programa de Pós Graduação em Ciência e Tecnologia dos Materiais, Bauru, SP, Brazil

ARTICLE INFO

Article history: Received 14 April 2016 Received in revised form 1 June 2016 Accepted 4 June 2016 Available online 7 June 2016

Keywords: Perovskite solar cells Niobium pentoxide Methyl ammonium lead iodide Hysteresis Stability

ABSTRACT

Perovskite solar cells have attracted attention due its high conversion efficiency and low cost. In this work, Nb₂O₅ is used as an alternative compact hole blocking layer in conjunction with mesoporous TiO₂ and CH₃NH₃PbI₃ in perovskite solar cells. The influence of Nb₂O₅ layer thickness was studied and it was found to strongly influence the *J*-V hysteresis of the cells. Devices constructed with 50 nm Nb₂O₅ have small or undetectable hysteresis, which becomes detectable and increases with increasing Nb₂O₅ layer thickness. For the best device, energy conversion efficiency of up to 12%, short-circuit currents of 17 mA/cm² and fill factors of 74% were found. These parameters are comparable to the best performance of similar devices where the compact layer is TiO₂. In addition, the use of Nb₂O₅ improved the stability of the solar cells under illumination. These improvements are attributed to a better extraction of photogenerated electrons in the perovskite layer.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Conversion efficiencies of perovskite solar cells (PSCs) have risen from 3% to more than 21% in just a few years [1], putting them in direct competition with Si solar cells, whose best commercial cells have an efficiency between 21% and 22%. [2].

Since PSC are a new class of photovoltaic materials, several questions concerning their working principle, optimization and stability need to be addressed. Many different architectures have been proposed as planar, [3] mesoscopic, [4] and meso-superstructured solar cells [5], and in general they are composed by a hole-blocking layer (HBL), the perovskite $CH_3NH_3PbX_3$ (X=I, Cl, Br) layer and a hole-transporting layer (HTL). HBL and HTL have the role to selectively and efficiently extract charge carriers from the perovskite semiconductor [6]. Most of the studies so far are focused either on the perovskite absorber or on the HTL, while the HBL are less studied. [7–10] Different materials have been used as HBL, the most common are compact oxides layers such as TiO_2 , [11,12] but also organic materials such as PCBM were studied [13]. Nb₂O₅ is a promising material because of its similar electronic properties to TiO₂ (band gap and charge transfer kinetics) and due to its better chemical stability. Nb₂O₅ is a transparent, air-stable

E-mail address: sy.fernandes@hotmail.com (S.L. Fernandes).

and water-insoluble material with extensive polymorphism. Tuning of the band gap of niobium oxides is possible by changing stoichiometry and crystallinity [14,15]. The conduction band (CB) is composed mainly by unoccupied Nb⁵⁺ 4_D-orbitals and it is 0.2-0.4 eV below the CB in TiO₂ [16,17]. Very recently, Miyasaka et al. reported the use of Nb₂O₅ as HBL in PSC, however, the results showed lower power conversion efficiency compared to analogous devices using TiO₂ [18].

Although PSCs have high conversion efficiency, one of its characteristic that needs attention is the *I-V* hysteresis with respect to scan direction, which is commonly reported [19]. Currently, the hysteresis has been tentatively attributed to various factors like ion migration, dynamic charge trapping and detrapping and charge accumulation at the interface [20]. The connection of charge accumulation with hysteresis has been studied [19,21,22]. In PSCs charge accumulation are caused mainly by unbalanced photogenerated charge extraction. In the cathode, holes are well extracted by the HTL, due to the high hole conductivity of the materials used, typically 2,2',7,7'-Tetrakis(N,N-dip-methoxyphenylamine)-9,9'-spirobifluorene (spiroOMeTAD). However, it is known that the electron transfer between the perovskite and the anode (TiO_2) is more challenging. The use of mesoporous TiO₂ offers a partial solution. It lowers the contact resistance for forward electron transfer with respect to flat TiO₂ due its higher surface, reducing the hysteresis [20,21,23]. Another solution makes use of planar PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) substituting TiO₂, resulting in lower J-V hysteresis

materials letters

^{*} Corresponding author at: UNESP – Chemistry Institute, Biochemistry and Chemistry Department, 14800-060 Araraquara, SP, Brazil.

due the higher conductivity of PCBM [19]. However, PCBM has a higher cost which is not ideal for large scale production of PSC.

In this work we have reduced the *J*-*V* hysteresis in mesoscopic $CH_3NH_3PbI_3$ PSCs using a Nb_2O_5 compact layer in association with mesoporous TiO₂. In this system, Nb_2O_5 is used to enhance electron extraction and to block holes from reaching the FTO anode.

2. Experimental

PSCs were constructed in the following configuration: FTO/ compact Nb₂O₅/mesoporous TiO₂/CH₃NH₃PbI₃/Spiro-OMeTAD/Au. Nb₂O₅ films were obtained by reactive magnetron sputtering using a metallic 3" diameter Nb target (99.9% purity) in a Kurt J Lesker System I. The deposition temperature was 550 °C, while the chamber pressure, argon and oxygen flow were kept at 5.0×10^{-3} Torr, 40 sccm and 8 sccm respectively. Films thicknesses were controlled using different deposition times, 8, 15, 30 and 40 min and determined by profilometry (Ambios XP1). UV-vis measurements were performance using a Varian Cary 50 UV-vis spectrophotometer and the optical band gap of the Nb₂O₅ films was estimated from the optical absorption coefficients using Tauc 's Plot. The other layers were prepared following standard procedures [4]. In short, the TiO₂ mesoporous layer was deposited on top of the compact Nb₂O₅ by spin-coating using a commercial paste from Solaronix (Ti-Nanoxide T/SP) diluted in anhydrous ethanol (1:3.5). A two-step deposition technique was used to synthetize the perovskite films [4]. Spiro-OMeTAD was deposited on top of the perovskite film. Finally, the gold cathode was thermally evaporated through a shadow mask defining the solar cell active area of about 0.34 cm². The FEG-VP Zeiss Supra 35 model was used for the FE-SEM (high resolution field emission scanning electron microscopy) cross section measurements. X-ray diffraction (XRD) was obtained using a Rigaku/RINT2000 from 10° to 50°. Current-voltage (I-V) characteristic were measured using a Keithley 2400 source/measure unit in the dark and under simulated AM 1.5G solar irradiation of 100 mW cm^{-2} from a calibrated solar simulator (Spectra-Nova). The voltage sweep rate used was 5mV/s for all measurements. For comparison, solar cells with a dense TiO₂ layer was deposited by sputtering at 300 °C using 20 sccm of argon flow and 20% of oxygen flow and a chamber pressure of 4.0×10^{-3} Torr. The film thickness was controlled using different depositions time, analogous to the Nb₂O₅ deposition.

3. Results and discussion

A transparent, homogeneous and flat Nb₂O₅ film was obtained. The Nb₂O₅ phase (JCPDS number 28-317) was confirmed by X-ray diffraction as shown in Fig. 1a. Cross section FE-SEM (Fig. 1b) and AFM images showed a homogeneous dense film; from AFM a rootmean-square (RMS) surface roughness of 2 nm was found. The thicknesses were measured by profilometry and found to be 50, 70, 110 and 220 nm for the different deposition times (8, 15, 30 and 40 min, respectively). UV–vis measurements confirmed the transparency of the films; for 50 and 70 nm thick Nb₂O₅ films the transmittance is close to 100% and for 110 and 220 nm it is close to 90%. The optical band gap of the Nb₂O₅ was found to be \sim 3.4 eV. Fig. 1a also shows the CH₃NH₃PbI₃ diffractions.

In Fig. 2 the *J*-*V* curves in the dark and under AM 1.5G illumination of the PSCs using two different Nb₂O₅ thicknesses are shown. The relevant parameters are summarized in Table 1 for all devices studied. The Nb₂O₅ based PSC gave conversion efficiencies (η) > 12%, short circuit current (J_{sc}) > 17 mA/cm², open circuit voltage (V_{oc}) > 0.9 V and a fill factor (*FF*) of 74%. As shown in a recent review [24] where the best performances found in different

technologies are presented, perovskites solar cells contrary to mature technologies like silicon based photovoltaics have still space to improve.

A solar cell with a 50 nm thin Nb₂O₅ compact layer has no apparent hysteresis, contrary to the one with the 220 nm thick Nb₂O₅ compact layer (Fig. 2). PSCs employing TiO₂ as HBL with analogous thicknesses to the Nb₂O₅ have lower performances compared to Nb₂O₅ and the higher η obtained was 11%. More importantly as expected from the literature, the *J*-*V* hysteresis is observed in TiO₂ HBL based devices at all thicknesses studied, as shown in Fig. 3.

Fig. 3 shows the difference in conversion efficiency (η) between the two scanning directions of the solar cells as a function of the HBL thickness. We are using this difference as indicator of the hysteresis strength. As can be seen, the only hysteresis-free device is the one with HBL of 50 nm Nb₂O₅.

In a first approximation, the perovskite layer has balanced electron and hole transporting behavior. [25] Thus, when the photogenerated electrons and holes are equally collected, there is no charge accumulation and no hysteresis. From the maximum power point of the *J-V* curves we estimated the resistance (R_s) of the 50 nm Nb₂O₅ based devices to be \sim 340 Ω , while for the 220 nm devices it was found to be \sim 450 Ω . Thus the higher R_s in the thick HBL based devices is responsible for the decrease in electron extraction, which results in charge accumulation and consequently J-V hysteresis [26]. The increase in R_s decreased J_{sc} and V_{oc} as well the conversion efficiency [27,28], see Table 1. We have constructed devices using Nb₂O₅ layers with thickness lower than 50 nm, however these devices did not work due to shorts caused by pinholes. As already mentioned TiO₂ HBL based PSC always presents hysteresis and the general trend with HBL layer thickness is the same. We attribute the hysteresis dependence to differences in electron extraction, as will be describe in the following.

As explained by Heo et al. [21] it is believed that the non-extracted electrons accumulated at the interface of perovskite/ TiO_2 causes the hysteresis. In the case of the couple TiO_2 mesoporous/ Nb_2O_5 compact, charge accumulation is reduced due the efficient electron transfer from TiO_2 to Nb_2O_5 ; since Nb_2O_5 CB lays below TiO_2 (see Fig. 1c). In addition, analyzing Fig. 1c it is clear that Nb_2O_5 is a better hole-blocking material than TiO_2 due to its lower valance band [18], which also favors electron extraction in this electrode.

The better electron extraction induced by the Nb₂O₅ compact layer does also influence the device stability. Fig. 4 shows a sequence of *J*-*V* measurements performed in air, under illumination, for both HBLs used, Nb₂O₅ and TiO₂. As can be seen the Nb₂O₅ based devices have higher stability compared to TiO₂ devices, even after twenty measurements, and independent of the scan direction.

This higher stability can be explained by the better electron extraction. Recently Bryant et al. [29] showed that the main cause of the perovskite degradation is oxygen rather than moisture. They found that molecular oxygen in presence of an excess of electrons produces O_2^- species resulting in fast degradation of the CH₃NH₃PbI₃ [30]. Previously, Kelly et al. [31] showed that ZnO induces a fast degradation of the perovskite. ZnO is known to have a negatively charged surface which induces acid-base reaction between CH₃NH₃PbI₃ and ZnO⁻ originating Zn–OH, I⁻, PbI₂ and CH₃NH₂. This reaction is driven by deprotonation of CH₃NH₃⁺ due the excess of electrons present at the ZnO surface.

Based on this, we propose that the same degradation mechanism occurs in our system depending on the density of accumulated electrons at the interface oxide/perovskite. In other words, in the specific case of Fig. 4, as discussed previously, the use of Nb₂O₅ increases the photogenerated electron extraction from

Fig. 1. (a) XRD of CH₃NH₃PbI₃ and Nb₂O₅ (b) FE-SEM cross-section image of the device (c) energy band diagram.

Fig. 2. J-V curves in the dark and under AM 1.5G illumination of solar cells with different $\rm Nb_2O_5$ layer thicknesses: 50 nm and 220 nm.

Table 1

Photovoltaic parameters obtained from solar cells with different Nb₂O₅ layer thickness under AM 1.5G illumination in forward (from short circuit to forward bias) and reverse (from forward bias to short circuit) scan. The numbers correspond to an average value obtained from 8 different cells.

HBL thickness	Scan	$V_{oc} \left(mV \right)$	$J_{sc}~(mA/cm^2)$	FF (%)	η (%)
50 nm	Reverse	924	17.9	74	12.3
	Forward	93	17.8	73	12.2
70 nm	Reverse	881	17.4	72	11.1
	Forward	886	16.9	70	10.5
110 nm	Reverse	872	16.9	72	10.7
	Forward	876	15.8	70	9.7
220 nm	Reverse	835	15.3	75	9.6
	Forward	850	13.8	68	8.0

Fig. 3. Difference between the conversion efficiency in the reverse and forward scan as a function of HBL thickness. The size of the symbols represents the measurement uncertainties.

the oxide/perovskite interface thus hindering the device degradation.

Despite Nb₂O₅ based devices showed an improvement in the stability, it is far from the lifetime of up to 25 years guaranteed by most manufacturers for Si based devices. Thus, a better understanding of the degradation mechanism is necessary to achieve a stability comparable to that one found in Si based devices [32]. Further investigations are ongoing in order to investigate the long term stability of these devices.

4. Conclusions

 Nb_2O_5 have been successfully used as HBL in PSC, with comparable efficiency with TiO_2 HBL based devices. Our results show

Fig. 4. J-V curves measured after and increased number of scans for different HBLs (a) Nb₂O₅ and (b) TiO₂.

that the use of a thin Nb_2O_5 compact layers in combination with mesoporous TiO_2 can result in PSC with small or undetectable hysteresis and improved solar cells short term stability due a better photogenerated electron extraction.

Acknowledgments

The authors thank FAPESP (Project number 2012/07745-9; 2014/23336-7; CEPID/CDMF 2013/07296-2) and CNPQ for funding, Timor Jaeger for TiO₂ films, Carlos Guilherme Gonçalves de Azevedo to help with the band gap calculation and CBMM Company for niobium metallic target.

References

- Key World Energy Statistics. (http://www.nrel.gov/ncpv/images/efficiency_ chaxdcfrrt.jpg), 2015 (accessed 01.01.15).
- Perovskite boosts silicon solar cell efficiency. (http://www.rsc.org/chemistry world/2015/11/perovskite-boosts-silicon-solar-cell-efficiency), 2016 (accessed 04.06.16).
- [3] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395–398, http://dx.doi.org/ 10.1038/nature12509.
- [4] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 (2013) 316–319, http://dx.doi.org/10.1038/ nature12340.
- [5] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science 338 (2012) 643–647, http://dx.doi.org/10.1126/ science.1228604.
- [6] E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, D. Cahen, Elucidating the charge carrier separation and working mechanism of CH₃NH₃Pbl_(3-x)Cl_(x) perovskite solar cells, Nat. Commun. 5 (2014) 3461, http: //dx.doi.org/10.1038/ncomms4461.
- [7] N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today (2014), http://dx.doi.org/10.1016/j.mattod.2014.07.007, Ahead of Print.
- [8] T.C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics, Energy Environ. Sci. (2014) 2518–2534, http://dx.doi. org/10.1039/c4ee00673a.
- [9] Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin, J. Liu, et al., Highly compact TiO₂ layer for efficient hole-blocking in perovskite solar cells, Appl. Phys. Express 7 (2014) 52301, http://dx.doi.org/10.7567/APEX.7.052301.
- [10] M. Makha, S.L. Fernandes, S. Jenatsch, J. Schleuniger, J. Tisserant, A.C. Véron, A transparent, solvent-free laminated top electrode for perovskite solar cells, Sci. Technol. Adv. Mater. (2016), http://dx.doi.org/10.1080/ 14686996.2016.1176512.
- [11] L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, et al., Mesoscopic CH₃NH₃Pbl₃/TiO₂ Heterojunction Solar Cells, J. Am. Chem. Soc. 134 (2012) 17396–17399, http://dx.doi.org/10.1021/ja307789s.

- [12] K. Mahmood, B.S. Swain, A. Amassian, Double-layered ZnO nanostructures for efficient perovskite solar cells, Nanoscale 6 (2014) 14674–14678, http://dx.doi. org/10.1039/c4nr04383a.
- [13] J. Xiong, B. Yang, R. Wu, C. Cao, Y. Huang, C. Liu, et al., Efficient and nonhysteresis CH₃NH₃Pbl₃/PCBM planar heterojunction solar cells, Org. Electron. 24 (2015) 106–112, http://dx.doi.org/10.1016/j.orgel.2015.05.028.
- [14] R.A. Rani, A.S. Zoolfakar, A.P. O'Mullane, M.W. Austin, K. Kalantar-Zadeh, Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications, J. Mater. Chem. A 2 (2014) 15683–15703, http://dx.doi.org/10.1039/C4TA02561J.
- [15] A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO₂ nanotubes and other self-aligned MO (x) structures, Chem. Commun. (2009) 2791–2808, http://dx.doi.org/ 10.1039/b822726h.
- [16] H. Luo, W. Song, P.G. Hoertz, K. Hanson, R. Ghosh, S. Rangan, et al., A sensitized Nb₂O₅ photoanode for hydrogen production in a dye-sensitized photoelectrosynthesis cell, Chem. Mater. 25 (2013) 122–131, http://dx.doi.org/10.1021/ cm3027972.
- [17] R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells, J. Am. Ceram. Soc. 92 (2009) 289–301, http://dx.doi.org/10.1111/ i.1551-2916.2008.02870.x.
- [18] A. Kogo, Y. Numata, M. Ikegami, T. Miyasaka, Nb₂O₅ blocking layer for high open-circuit voltage perovskite solar cells, Chem. Lett. 44 (2015) 829–830, http://dx.doi.org/10.1246/cl.150167.
- [19] J. Hyuck Heo, M. Sang You, M. Hyuk Chang, W. Yin, T.K. Ahn, S.-J. Lee, et al., Hysteresis-less mesoscopic CH₃NH₃Pbl₃ perovskite Hybrid solar cells by introduction of Li-treated TiO₂ electrode, Nano Energy 15 (2015) 530–539, http: //dx.doi.org/10.1016/j.nanoen.2015.05.014.
- [20] H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, et al., Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett. 5 (2014) 1511–1515, http://dx.doi.org/10.1021/jz500113x.
- [21] J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH₃NH₃Pbl₃ planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy Environ. Sci. 8 (2015) 1602–1608, http://dx.doi.org/10.1039/ C5EE00120J.
- [22] N.M.B. Wu, K. Fu, N. Yantara, G. Xing, S. Sun, T.C. Sum, Charge accumulation and hysteresis in perovskite-based solar cells: an electro-optical analysis, Adv. Energy Mater. 1500829 (2015) 1–8.
- [23] K.G. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim, T.W. Lee, Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function, Adv. Mater. 26 (2014) 6461–6466, http://dx.doi.org/10.1002/adma.201401775.
- 6461–6466, http://dx.doi.org/10.1002/adma.201401775. [24] A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovolt. Mater. – present Effic. future Chall. 352 (2016) 1–24, http://dx.doi.org/10.1126/science. aad4424.
- [25] J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, et al., Efficient CH₃NH₃PbI₃ perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition, Adv. Mater. 27 (2015) 4013–4019, http://dx.doi.org/10.1002/adma.201500523.
- [26] K. Hamada, N. Murakami, T. Tsubota, T. Ohno, Solution-processed amorphous niobium oxide as a novel electron collection layer for inverted polymer solar cells, Chem. Phys. Lett. 586 (2013) 81–84, http://dx.doi.org/10.1016/j. cplett.2013.08.015.
- [27] W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH₃NH₃PbI₃ perovskite solar cells: the role of a compensated electric field, Energy Environ. Sci. 8 (2015) 995–1004, http://dx. doi.org/10.1039/C4EE03664F.

- [28] H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.-G. Park, et al., Mechanism of carrier accumulation in perovskite thinabsorber solar cells, Nat. Commun. 4 (2013) 2242, http://dx.doi.org/10.1038/ ncomms3242.
- [29] D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, et al., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells, Energy Environ. Sci. (2016), http://dx.doi.org/10.1039/C6EE00409A.
- [30] N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, et al., The role of oxygen in the degradation of

methylammonium lead trihalide perovskite photoactive layers, Angew. Chem. Int. Ed. (2015) 1-6, http://dx.doi.org/10.1002/anie.201503153.

- [31] J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Origin of the thermal instability in CH₃NH₃PbI₃ thin films deposited on ZnO, Chem. Mater. 27 (2015) 4229–4236, http://dx.doi.org/10.1021/acs.chemmater.5b01598.
 [32] A. Fromm, Predicting the life expectancy of solar modules, Res. News Fraun-
- hofer Inst. 10 (2013) 15-16.