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Abstract—In the field of high performance heterogeneous
computing systems, field programmable gate arrays (FPGAs)
have shown great advantages in terms of acceleration and energy
efficiency. And with the inclusion of the OpenCL framework for
parallel programming, the design complexity has been greatly
reduced. However, the parallel implementation of applications
containing data-dependent branches usually experiences an im-
portant loss in performance, which affects all platforms alike.
This data dependency leads the execution of parallel threads,
also called work-items in OpenCL, to diverge. Whereas fixed
architectures like CPU, GPU and Xeon Phi cannot efficiently cope
with this divergent execution, the flexibility offered by FPGAs in
terms of architecture can be exploited to tackle this problem.

In this work, we present a new approach for FPGA implemen-
tations that decouples the parallel OpenCL work-items, avoiding
the interference of data-dependent branches between them.
We also demonstrate the necessary workarounds to obtain the
maximum performance in a pipelined design, when unpredictable
for-loop exit conditions are caused by the data dependency.
Furthermore, we show how to efficiently interleave computation
with transfers to device global memory in each work-item.

This approach is then evaluated with a real-life case study
from Finance, with four different configurations implemented
on FPGA with Xilinx SDAccel, and compared to the optimized
implementation on CPU, GPU, and Xeon Phi. Our results show
that FPGAs can deliver up to 5.5x speedup, whereas the system-
level energy efficiency increases between 2x and 9.5x in all cases.

I. INTRODUCTION

An FPGA is a computing device that offers an empty

canvas of hardware resources and interconnects that can be

customized to the target application [1], providing four main

advantages over traditional architectures: pipelined data paths,

infinite bit-level parallelism, custom-precision data types, and

customized memory hierarchy. These characteristics are gain-

ing increasing attention in high performance and cloud com-

puting, in particular with the recent inclusion of FPGAs in the

new Amazon Elastic Compute Cloud (EC2) F1 instance [2].

Maxeler Technologies, one of the largest providers of FPGA-

based systems in the Finance industry, has recently announced

it will exploit these Amazon instances to expand its services

for compute-intensive financial risk simulations [3].

In terms of heterogeneous computing systems, the Open

Compute Language (OpenCL) [4] has become the standard

framework for general purpose parallel programming [5],

enabling the migration between different platforms due to its

code portability. Although performance might not be portable,

the code can be optimized to the underlying architecture. This

also allows for a fair comparison among different platforms

in terms of runtime, energy consumption, or even both.
When an algorithm is mapped onto multiple parallel threads,

which are called work-items in OpenCL, data-dependent

branches should always be avoided, as they reduce the overall

performance. The reason is that these work-items are physi-

cally grouped in hardware [6], [7], or implicitly vectorized [8],

especially in accelerators with fixed architecture. This is the

case for example on central processing unit (CPU), graphics

processor unit (GPU), and Intel’s Xeon Phi, a many integrated

core (MIC) architecture.
Exploiting the mentioned FPGA characteristics, we present

a new design approach to decouple the OpenCL work-items on

FPGAs, in such a way that the divergent branches in different

work-items are independently executed. Besides, the necessary

memory transfers to device (accelerator) global memory are

efficiently interleaved with the fully pipelined computations,

in order to achieve maximum throughput.
Additionally, we tackle applications with data-dependent

branches that require loops with dynamically-modified limits.

One such case is a limit based on a counter whose value is

incremented inside a divergent branch. This is a challenge in

pipelined architectures on FPGAs to achieve the maximum

throughput, i.e. an initiation interval of one clock cycle.
One type of algorithms with these characteristics are

rejection-based methods, where an output is accepted/rejected

based on a data-dependent rule condition, and where the loop

iterations depend on a counter. Therefore, we evaluate our

new approach by implementing on FPGA a nested rejection-

based algorithm used in real-life financial applications, and we

compare its performance in terms of runtime and system-level

energy efficiency, against CPU, GPU, and Xeon Phi.
In summary, we provide detailed analysis and results on:

• a new generic approach to implement decoupled OpenCL

work-items on FPGAs,

• how to handle dynamically-modified for-loop exit condi-

tions in pipelined architectures with an initiation interval

of one clock cycle,

• interleaving the pipelined work-items with transfers to

device global memory,

• the comparison to CPU, GPU, and Xeon Phi in terms of

runtime and energy efficiency.
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II. BACKGROUND AND RELATED WORK

OpenCL is an open, royalty-free standard for general pur-

pose parallel programming that can be ported to multiple

platforms, and it supports both data- and task-based parallel

programming models [4]. This framework assumes the pres-

ence of a host (usually a CPU) and an accelerator (device)

connected to it via Peripheral Component Interconnect Express

(PCIe). A device contains compute units, each subdivided into

processing elements. This structure, as well as the memory

hierarchy, is shown in Fig. 1.
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Fig. 1: OpenCL basic hardware and memory structure.

Kernels are enqueued by the host as a Task (basically

a single-threaded kernel), or as an N-Dimensional Range
(NDRange) with a defined number of work-items (globalSize)

grouped into work-groups of localSize work-items. The host

transfers data (read/write) to device global memory, by pre-

declaring the necessary buffers.

In this work we consider four OpenCL accelerators. First, a

CPU is the most general-purpose platform with good perfor-

mance per single core/thread [9]. Although regularly used as

a host in OpenCL applications, a CPU can also be used as an

accelerator [7]. Second, Intel’s Xeon Phi is a many integrated

core (MIC) architecture, where each core includes a 512-bit

vector arithmetic unit for wide single instruction multiple data

(SIMD) instructions [8]. Third, on GPU we can execute a

very large number of parallel threads on highly optimized

data paths, hiding this way the latency of memory accesses

[6]. Fourth, an FPGA offers a set of hardware resources that

can be configured and interconnected based on the target

application [1], namely flip-flops (FFs), lookup tables (LUTs),

digital signal processors (DSPs), and Block RAMs (BRAMs).

A. OpenCL on FPGAs

Whereas CPUs, GPUs, and Xeon Phi have a fixed architec-

ture that executes the compiled OpenCL code, the hardware

configuration on FPGAs is contained in a file called bitstream,

which is generated with vendor-specific tools that translate the

OpenCL code. In our case we employ the Xilinx SDAccel

tool (version 2015.4) [1], which provides the development

environment and the necessary hardware interface via PCIe,

delivering an increase in the overall design productivity [10].

Compute units on FPGAs are instantiated at design time.

SDAccel maps each work-group of an NDRange kernel to one

compute unit, and inside the latter the corresponding work-
items are mapped to a single pipeline using a set of nested

for-loops [11]. In this regard, spatial parallelization of work-
items is then achieved by instantiating several compute units.

To transform the OpenCL code into the required register-

transfer level (RTL) implementation, SDAccel uses Xilinx

Vivado high-level synthesis (HLS) compiler [12]. Certain

features and libraries inherited from Vivado HLS are only

available in .c kernels launched as Tasks. This includes ar-

bitrary precision data types (ap int.h) and arbitrary precision

fixed point types (ap fixed.h) [12], which are necessary in our

test case application. Working at .c level also offers low-level

control of the architecture, including the HLS pragmas that

allow us to manually instantiate parallel work-items.

B. Divergent OpenCL Work-Items

On accelerators with fixed architecture, parallel OpenCL

work-items are physically grouped in hardware [6], [7], or the

work-groups are implicitly vectorized [8]. This can be seen as

having hardware partitions of fixed size. For example, Nvidia

GPUs schedule warps (hardware partitions) of 32 threads

(work-items) that execute the same kernel computation on

different data, while Intel Xeon Phi uses a 512-bit implicit

vectorization unit (SIMD) on each work-group.

The ideal execution of work-items in a hardware partition

can be exemplified as in Fig. 2a, which includes static branches

that take the same side in all work-items. However, data-

dependent branches lead the work-items to diverge, as exem-

plified in Fig. 2b. When this happens, the hardware partition

needs to evaluate both sides of each branch, which can only be

done sequentially. As a result, the work-items not executing the

current side of the branch (or the current operation) become

idle, causing a significant loss in performance (Fig. 2b).

tim
e

(one hardware partition)

a) Ideal Execution of 
OpenCL 

Work-Items

Divergent OpenCL Work-Items

(new approach)
c) FPGAb) CPU/GPU/XeonPhi

Fig. 2: (a) all work-items execute the same instruction at any

given time; (b) divergent work-items become idle (red dots)

on fixed architectures; (c) our new approach on FPGAs.

C. New Approach: Decoupled OpenCL Work-Items on FPGAs

To avoid the loss in performance caused by data-dependent

branches (Fig. 2b), meaning branches whose condition has a

true dependency on the results from preceding instructions (see

e.g. [13]), we exploit the flexibility of FPGAs to generate fully

decoupled OpenCL work-items that do not interfere with each

other. This can be seen as having multiple hardware partitions

of one work-item each, as exemplified in Fig. 2c.

To maximize throughput on FPGAs, these work-items must

be fully pipelined with an initiation interval of one clock cycle,
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Fig. 3: OpenCL work-items schedule in time: C = Computa-

tion, T = Transfer to device global memory.

and all transfers to device global memory must be interleaved

with the pipelined computations, as shown in Fig. 3. By

exploiting the maximum width in the memory interface, the

output data can be packed and transferred into bursts of fixed

length. Therefore, the time consumed by each transfer is

smaller than the corresponding computation. Following Fig. 3,

all work-items are triggered at t0, but the transfers to memory

can only occur one at the time on a single memory channel.

Then at a later time tX the work-items become shifted in time,

efficiently overlapping computation and transfers.

Following Section II-A, our new design approach is devel-

oped for the general case of .c kernels launched as a Task, with

guidelines on how to adapt it to the .cl NDRange case. Details

on the work-group granularity are discussed in Section III-A.

D. Test Case Application: Basics

Our representative test case is the Marsaglia-Tsang

rejection-based algorithm to generate gamma-distributed ran-

dom numbers (RNs) [14], shown in Fig. 4, which is a nested
random number generator (RNG) that requires three input RN

sequences: one with normal and one with uniform distribution

to generate and accept/reject the output RN, and a second

uniform distribution to correct this output under certain input

values. Both the rejection and the correction rules have a true
data dependency (see for example [13]) on the underlying

RNGs (see later Listing 2). Details of the algorithms men-

tioned in Fig. 4, as well as the application, are given below:

Marsaglia-Tsang
(gamma)

Mersenne-Twister
(uniform)

Marsaglia-Bray
(normal)

ICDF
(normal)

Mersenne-Twister
(uniform)

Mersenne-Twister
(uniform)

correction

rejection

Fig. 4: Test case application: Marsaglia-Tsang gamma RNG.

1) Mersenne-Twister: it is widely used to obtain uniform

distributions [15], and on FPGAs it requires a small amount

of resources. It needs a vector of internal states and a set of

logic operations (such as shift and xor) to obtain the output

RN. Each state is only used once and updated accordingly.

2) Marsaglia-Bray Transformation: one of the several ways

of converting from uniform to normal distributed RNs is by

means of rejection methods [16]. Although the Marsaglia-

Bray method avoids the heavy trigonometric math operations

used in the well-known Box-Muller method [17], it still

runs complex floating-point operations such as log, sqrt, and

division. Its rejection rate becomes a challenge in terms of

implementation, and it also needs two input uniform RNs to

generate one output. If necessary, the two input sequences can

be split into two parallel Mersenne-Twisters following [18].

3) Inverse cumulative distribution function (ICDF) Trans-
formation: it is an alternative method to convert from uniform

to normal distributed RNs [16], that only requires logic op-

erations. Our implementation on FPGA follows [19], which

is optimized for bit-level logic operations. For the other three

platforms, these operations need to be replaced by their equiv-

alent 32-bit unsigned integer version using shifts together with

and and or masking operations. However, we later show that

this modification becomes inefficient in terms of runtime, espe-

cially on CPU and Xeon Phi. As a replacement, we implement

a modified version of Nvidia’s curand normal icdf function

(curand normal static.h, available in Compute Unified Device

Architecture (CUDA)), with one important modification: we

replace the erfcinv function with a more appropriate version

that minimizes divergent branches [20], together with the

identity erfcinv(x) = erfinv(1− x).
4) Application of Gamma RNs: CreditRisk+ is a financial

model to perform credit risk analysis in a portfolio of loans,

and it is the only such model that focuses on the event of

default [21]. Under compute-intensive Monte Carlo (MC) sim-

ulations, the economy state is simulated by the combination

of sectors, which are assumed to be stochastically independent

gamma-distributed RNs with expectation E(Sk) = 1 and

variances V ar(Sk) = σ2
k = υk, k = 1, ..., N . Therefore,

Sk ∼ Gamma(ak, bk), where ak = 1/υk and bk = υk.

The larger the simulated gamma variable is, the worse is this

financial sector in the current simulation run.

E. Test Case Application: Challenges on FPGAs

Generated gamma-distributed RNs are validated or rejected

based on a stochastic process. Therefore, a valid output will

not be available in every clock cycle, which is a challenge

in pipelined architectures. The same applies to the Marsaglia-

Bray algorithm and to the ICDF function’s implementation.

Following Fig. 4, every time Marsaglia-Bray (or ICDF)

invalidates its output, the following two Mersenne-Twisters

should stop; and every time a gamma RN is rejected, the

Mersenne-Twister used for gamma correction should also stop.

If this was not the case, we would be incorrectly discarding

RNs, causing a distortion in the uniform distributions.

Furthermore, the complete process is inserted inside one or

more for-loops, whose limits cannot be determined at design

time. Therefore, the limit of the main (inner) for-loop needs to

be dynamically adapted to the underlying stochastic process.
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F. Related Work
The implementation challenges associated with rejection

methods in parallel programming are discussed in [22]. To

the best of our knowledge, our new approach to decouple

OpenCL work-items on FPGAs is exploited for the first time,

especially in a generalized way with algorithms that contain

data-dependent branches. This also includes the handling of

dynamically-modified for-loop exit conditions, and the full

implementation of our test case application (see Section II-D).

III. FPGA IMPLEMENTATION

Following Section II, here we present all implementation

details, including: how to decouple OpenCL work-items in

general, specific implementation details on the test case ap-

plication, the necessary modification to the Mersenne-Twister

pseudo random number generator (PRNG) implementation, the

transfers from each work-item to device global memory, and

how to efficiently handle the buffers in device global memory.

A. Decoupled Work-Items Generation
In Listing 1 we present the function that packs N parallel

work-items, which is inlined in the main kernel function.

Listing 1: Decoupled Work-Items

inline void DecoupledWorkItems ( ...,
// repeat N times for index _i
ap_uint<512>* gammaValues_i )

{
#pragma HLS DATAFLOW
// --------- WORK ITEM ----------------
// repeat N times for index _i
hls::stream<float> gS_i;
#pragma HLS STREAM variable=gS_i depth=2048
GammaRNG (_i, ... , gS_i);
Transfer (_i, ... , gS_i, gammaValues_i);
// ------------------------------------
return;

}

To provide more flexibility at design time, in each work-

item we separate computations from the transfers to memory

(see Fig. 3). In doing so, we need the hls::stream interface

[12] to introduce blocking communication between generation

(GammaRNG) and the corresponding Transfer function.
The DATAFLOW pragma [11], [12] schedules the work-

items in parallel, under the constraint that each variable has a

single producer-consumer pair. This prevents us from instan-

tiating a single pointer to device global memory. However,

we offer a workaround by assigning each work-item its own

pointer to memory, following Sections III-D and III-E.
Each work-item in Listing 1 is given manually a unique

id ( i) at design-time, the same way OpenCL would assign

them in a .cl kernel. Notice that whereas each work-group

in an NDRange kernel (.cl) would be completely mapped

to a single pipeline (see Section II-A), here we are directly

instantiating each work-item in parallel inside a single Task.

Although the latter limits localSize to 1 (the size of a work-

group), an NDRange has a flexible work-group granularity.

In either case, what directly affects the overall runtime is the

number of pipelines (work-groups) instantiated in parallel.

B. Test Case Application: Design and Workarounds
Following the implementation challenges discussed in Sec-

tion II-E, we propose an efficient workaround by creating a

single block of code which is fully pipelined, and where each

gamma RN is computed, corrected, and only validated after-

ward. The three Mersenne-Twisters are placed in a sequence,

using a set of flags to modify their behavior on-the-fly (details

are covered in Section III-C). Only validated (and possibly

corrected) gamma RNs are written to an output hls::stream,

transferring them to the next step, as shown in Listing 2.
Every time the function outputs a validated gamma RN, a

counter is incremented, which is used to dynamically deter-

mine the break point of MAINLOOP. This dependency on the

value of the counter hinders an initiation interval of one clock

cycle. To overcome this effect, we delay the count as many

iterations as necessary using a completely partitioned array

and a breakId (index). This index is kept as low as possible,

and here it suffices to use zero (meaning a delay of one cycle).

Listing 2: Test Case Application

inline void GammaRNG (..., const unsigned int wid,
hls::stream<float> &gammaStream )

{
// ... all initializations ...
// ------------------------------------
SECLOOP: for(sector=0;sector<limitSec;++sector)
{

bool alphaFlag = (alpha<=1.0f)?true:false;
// ------------------------------------
unsigned int counter = 0;
const short breakId = 0;
unsigned int prevCounter[breakId+1];
// ------------------------------------
MAINLOOP: for(unsigned int k=0; (k<limitMax)

&&(prevCounter[breakId]<limitMain); ++k)
{
#pragma HLS pipeline II=1
// ------------------------------------
UpdateRegUI(breakId, counter, prevCounter);
// Normal RN
float n0;
//bool n0_valid = ICDF(&n0,MT0(true,...));
bool n0_valid = M_Bray(&n0,MT0(true,...));
// Uniform RN (for rejection)
float u1 = uint2float (MT1(n0_valid,...));
// Rejection Method
float gRN;
bool gRN_valid = GammaRN(&gRN, n0, u1);
bool gRN_ok = n0_valid && g_valid;
// Uniform RN + for correction
float u2 = uint2float(MT2(gRN_ok,...));
float gRN_ = Correct(gRN, u2, alpha);
// Output
float gamma = (alphaFlag)?gRN_:gRN;
if(gRN_ok && (counter<limitMain))
{ gammaStream.write(gamma);
++counter;

} } }
return;

}

C. Mersenne-Twister Adapted Implementation
As mentioned before, the Mersenne-Twisters should be

stopped whenever necessary. But in order to achieve an initi-

ation interval of one clock cycle, these blocks are allowed to

127127



run continuously, using an external flag to enable the internal

state update, see Listing 3. Once the current state is finally

used and updated, the state index is incremented by one.

Listing 3: Mersenne-Twister (Adapted)

inline unsigned int MT ( bool updateFlag,...)
{
unsigned int currI0 = stateI0[*i0]; ...;
// ------------------------------------
unsigned int y = Update(currI0,...);
// ------------------------------------
if(updateFlag) stateI0[*i0] = y; ...;
// ------------------------------------
unsigned int U = Tempering(currI0,...);
// ------------------------------------
unsigned short inc = (updateFlag)?1:0;
*i0 = ((*i0)>=(MT_N-1))?0:(*i0)+inc; ...;
return U;

}

D. Transfers to Memory: Device Side

The transfers to memory are more efficient when the full

width of the interface is used, and when the transfers are

generated in bursts. The interface on SDAccel and the given

board (Section IV-A) is 512 bits, equivalent to 16 single-

precision floating point values [11]. The gamma RNs are read

one after the other and packed in groups of 16, which is the

equivalent of float16 in an NDRange kernel. The bursts are

obtained by means of the memcpy function, and an offset is

used to allocate the blocks of data consecutively in memory.

Listing 4 shows the corresponding code.

Listing 4: Transfers

inline void Transfer ( ...,
const unsigned int wid,
hls::stream<float> &gammaStream,
ap_uint<512>* gammaValues)

{
// ------------------------------------
ap_uint<512> gamma512;
ap_uint<512> transfBuf[LTRANSF];
#pragma HLS DEPENDENCE variable=transfBuf false
unsigned short i = 0;
// ------------------------------------
unsigned int offset = blockOffset * wid;
// ------------------------------------
SECLOOP: for(sec=0; sec<limitSec; ++sec)
{
REPLOOP: for(rep=0; rep<limitRep; ++rep)
{
TLOOP: for(path=0; path<SXTRANSF; ++path)
{
#pragma HLS pipeline II=1
#pragma HLS LOOP_FLATTEN off
float gamma = gammaStream.read();
bool tFlag = g512(&gamma512, gamma, ...);
if(tFlag) transfBuf[i] = gamma512;
if(tFlag) i=(i>=(LTRANSF-1))?0:i+1;

}
memcpy((ap_uint<512>*) (gammaValues+offset),

transfBuf, sizeof(float)*SXTRANSF);
offset += LTRANSF;

} } // REPLOOP -- // SECLOOP ----------
return;

}

E. Transfers from Memory: Host Side

Assume we have N work-items. Following Section III-D,

assigning each transfer function (therefore, each work-item)

with its own pointer to memory would imply the allocation of

N OpenCL buffers, and N read requests from device memory.

In general, the host would preferably handle a single buffer

in host memory, which in turn means the reads should be

combined into one. To this end, we present two solutions:

1) Combining buffers at host level: The host allocates N
buffers in device global memory with length L/N , being L the

total length, whereas a single buffer with length L is allocated

in host global memory. Then N read requests are enqueued,

each with an offset wid ∗L/N on the destination host buffer,

being wid the id of the corresponding work-item.

2) Combining buffers at device level: We handle a single

buffer in device global memory, and a single buffer in host

global memory, both with length L. Then the same device

buffer is assigned N times to the kernel, and each work-item

determines its transfer offset based on their wid (see Listing 4).

Note that this approach does not reduce the performance on the

device side (less than 1% loss for the setup in Section IV-B).

Because it requires a single read request from device global

memory, this is the chosen approach in this project.

IV. RESULTS

Hardware and simulation setups are defined, followed by

results on resources utilization, runtime, and energy efficiency.

A. Hardware Setup

For this project we make use of a high-performance work-

station with the following setup: SuperMicro Superserver

7048GR-TR: dual-socket X10DRG-Q motherboard, 2000W

high-efficiency redundant power supplies (Titanium level),

cooling kit MCP-320-74701-0N-KIT (for GPU and Xeon

Phi); CPUs: (2x) Intel Xeon Processor E5-2670 v3 (Haswell

architecture, technology node 22 nm, 12 cores (24 threads),

base frequency 2.3 GHz), 64GB DDR4; Xeon Phi: (1x)

Intel Xeon Phi Coprocessor 7120P (Many Integrated Core

(MIC) architecture, technology node 22 nm, 61 cores, base

frequency 1.238 GHz, 16 GB, passive cooling); GPU: (x1)

Nvidia Tesla K80 GPU Accelerator (dual GK210, Kepler

architecture, technology node 28 nm (2x) 2596 CUDA Cores,

base frequency 560 MHz, (2x) 12 GB, passive cooling);

FPGA: (x1) Alpha Data ADM-PCIE-7V3 (Xilinx Virtex-7

XC7VX690T-2 (FFG1157C) FPGA, technology node 28 nm,

SDAccel frequency 200 MHz, 16 GB, active cooling/small

fan). Operating system: Linux RedHat 6.6 (Linux 2.6.32-

504.el6.x86 64); room temperature is controlled at ∼ 23◦C.

In this work we evaluate and compare four combinations

host+accelerator, which are named:

• CPU: CPU+CPU (dual-socket motherboard),

• GPU: CPU+GPU,

• PHI: CPU+Xeon Phi,
• FPGA: CPU+FPGA.
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B. Simulation Setup
We evaluate four configurations of the test case application,

as shown in Table I. These configurations affect the resources

utilization, runtime and energy consumption.

TABLE I: Simulation Setup: Application Configurations

Config. Uniform to Normal Mersenne-Twister [18]

Name Transformation Exponent Period States

Config1 19937 2(19937−1) 624

Config2
Marsaglia-Bray

521 2(521−1) 17

Config3 19937 2(19937−1) 624

Config4
ICDF

521 2(521−1) 17

The code running on CPU, GPU and PHI is also optimized:

1) memory accesses on GPU/PHI are coalesced, whereas each

work-item on CPU writes to consecutive addresses; 2) their

ICDF implementation is optimized for fixed-architectures,

which differs from the optimal implementation on FPGA (see

Section II-D3). We later show in Section IV-E the runtime of

both versions. Although using platform-specific programming

frameworks could deliver slightly better performance, OpenCL

enables a fair comparison under similar conditions.
We assume from now on the generation of large sequences,

where the length can be set at runtime. We also assume that

the four accelerators send the gamma RNs back to the host.

Therefore, we focus on reducing the kernel runtime.
To define localSize for CPU, GPU and PHI, we run the

application and plot the profile shown in Fig. 5a. From here

we can derive localSizeCPU = 8, localSizeGPU = 64, and

localSizePHI = 16. Given the optimal localSize per platform,

in Fig. 5b we confirm the choice of globalSize set to 65536.
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Fig. 5: Measured runtime vs localSize and globalSize for

Config1,3. The remaining configurations yield a similar plot.

In the case of FPGAs, the number of parallel work-items de-

pends on the number of available hardware resources (detailed

in Section IV-C). Achieved: 6 work-items with Config1,2 and

8 work-items with Config3,4. This corresponds to the number

of work-groups in a .cl NDRange kernel (see Section III-A).

Additional parameters: numScenarios = 2, 621, 440 and

numSectors = 240 (see Section II-D4), which corresponds

to a total of ∼ 2.5 GB of generated data (in single-precision

floating point) per simulation run; the representative financial

sectors variance is υ = 1.39 (see later Section IV-E).

C. FPGA Resources Utilization

For our final FPGA implementations we have iteratively

increased the number of parallel work-items in steps of one,

as far as the place-and-route process allowed. Table II shows

that in all cases the design is limited by the number of slices.

TABLE II: FPGA P&R Resources Utilization Report

Resources1 Utilization [%]2

Name Available Config1 Config2 Config3 Config4

Slice3 107400 53.43 52.75 52.92 52.72

DSP 3600 23.67 23.67 21.56 21.56

BRAM 1470 20.31 20.31 24.05 24.05

1 Includes: 1) reconfigurable OCL (OpenCL) region; 2) static region (PCIe).
2 Information on regions’ size is not available. After several trial-and-error

tests we estimate the available OCL region at approx. 2/3 of the total
resources. The corrected utilization for slices is estimated at 80%.

3 Each slice contains 4 LUTs and 8 FFs.

D. Results Validation

In Fig. 6 we show two representative gamma-distributed RN

sequences generated on FPGA, under the given setup. For the

same input parameters, the distributions look very similar to

the benchmark distribution generated in Matlab, and become

closer and closer to it as the number of samples increases.

Fig. 6: FPGA gamma distribution (gray color area) vs Matlab

benchmark gamrnd function (dotted black line); υ corresponds

to the financial sector variance (see Section II-D4).

E. Runtime

Table III summarizes the measured runtime under the given

setup (see Section IV-B), averaged over several iterations for

a minimum of 100 seconds. In the case of Config1 the FPGA

achieves the best performance in terms of runtime, reaching a

5.5x/3.5x/1.4x speedup vs CPU/GPU/PHI respectively, with

comparable runtime to PHI under Config2. Here the combi-

nation of the Marsaglia-Bray algorithm to obtain normally
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distributed RNs and the Marsaglia-Tsang algorithm to generate

the gamma-distributed outputs (see Fig. 4) achieves a rejection

rate of 30.3% for the given setup. From a Matlab benchmark

simulation, this rate ranges from 27.8% for a sector variance

υ = 0.1, to 33.7% for υ = 100.

TABLE III: Runtime [ms] for the given Setup

Setup CPU GPU PHI FPGA

Config1 3825 2479 996 701

Config2 3883 1011 696 701

Config3: ICDF CUDA-style1 807 1177 555 -

Config3: ICDF FPGA-style1 2794 1181 2435 642

Config4: ICDF CUDA-style1 839 522 460 -

Config4: ICDF FPGA-style1 2776 521 2294 642

1 Refer to Section II-D3 for details on the ICDF versions. On CPU, GPU
and PHI, we later use ICDF CUDA-style, due to its higher performance.

In the case of the ICDF function (see Fig. 4), the combined

rejection rate is 7.4% for the given setup, and it varies from

5.3% to 10.2% for υ = 0.1 tand υ = 100 respectively. A

lower rejection rate implies less divergent branches for CPU,

GPU and PHI, reducing the runtime. In this regard, the FPGA

still shows ∼ 2x better performance than CPU under Config3
and Config4. Nevertheless, it just achieves 0.9x and 0.7x of

the PHI performance for Config3 and Config4 respectively,

whereas compared to GPU these values read 1.8x and 0.8x.

The theoretical runtime on FPGA can be approximated by:

t ≈
(
numScenarios ∗ numSectors

numWorkItems ∗ fFPGA
∗ (1 + r)

)
(1)

where fFPGA is the operating frequency, r refers to the

combined rejection rate seen previously (in absolute value),

and we exclude the overhead outside the main pipelined for-

loop. For the given setup, we obtain: tConfig1,2 ≈ 683ms and

tConfig3,4 ≈ 422ms Although former is close to the measured

runtime in Table III, the later differs by approximately 35%.

If we now remove the computations from our kernel, leaving

only the transfers to device memory, we obtain Fig. 7 for

different burst sizes and the number of parallel work-items.

Comparing Fig. 7 with Table III, we find that the transfers

to memory determine the overall runtime, with a measured

bandwidth equal to 3.58GB/s for Config1,2, and 3.94GB/s
for Config3,4. Further customizations of the memory controller

inside the tool would improve the performance.

F. Power and Dynamic Energy Consumption

In our setup, power measurements were possible at the

power plug. To this end, we have used a Voltcraft VC870

digital multimeter, which takes one sample per second. This

sample rate is enough in our case, provided the measurement

time is kept high enough. The multimeter transmits the results

via a dedicated Universal Serial Bus (USB) cable to an external

PC, where they are conveniently stored and post-processed.

The measurements are shown in Fig. 8. The host triggers

the gamma kernel at the first (vertical) marker, and it enqueues
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Fig. 7: Measured runtime of transfers-only (using dummy data)

with different burst lengths (number of RNs per burst). The

memory interface is the maximum available: 512 bits [11].
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Fig. 8: Power consumption using Config1. The measurements

of the remaining configurations yield similar plots.

the kernel several times in order to reach over 150 seconds.

The power consumption spike seen at system-level at the first

marker includes the host, device, PCIe communications, and

the cooling system set to dynamically adapt to the workload

(optimal mode). Because the process of enqueuing the kernel

is asynchronous from the host side, after some time the host

will remain idle waiting for the cl events to complete (one

per kernel invocation), minimizing its power consumption.

Therefore, only the time interval of 100 seconds between

the last two markers is considered for integration purposes.

From this result we subtract the static energy consumption

(corresponding to an idle power consumption of ∼ 204W in

Fig. 8), to obtain the dynamic energy consumption.

This is in fact a fair way of comparing the different

platforms under the given hardware setup: we start from a

workstation with all devices in idle mode, including the host,

all accelerators, and the cooling system, and we are then

CPU GPU PHI FPGA
Config1 483 422 220 53
Config2 496 192 150 52
Config3 151 207 126 47
Config4 156 104 102 46
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Fig. 9: Derived system-level dynamic energy consumption per

kernel invocation.
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interested in finding the solution that minimizes the extra

energy required for the simulation. It is also fair in terms

of the consumption arising from the cooling system, since

different devices have different external cooling requirements

that should be taken into account at system-level.

Dividing the integrated dynamic energy consumption by

the times a kernel is repeated inside the 100-second interval

(the number of repetitions is no longer an integer value),

we obtain the averaged dynamic energy consumption per

kernel invocation. The results are presented in Fig. 9 for all

configurations (see Section IV-B).

The FPGA solution shows the best energy efficiency in

all cases, ranging from a maximum of 9.5x/7.9x/4.1x vs

CPU/GPU/PHI under Config1, to a minimum of approximately

2.2x vs GPU and PHI under Config4. This results from a

low power consumption combined with an efficient pipelined

architecture that delivers a very good runtime performance.

V. CONCLUSION

In this work we have tested four configurations of a repre-

sentative financial application. Our results show that the FPGA

implementation achieves very good runtime performance com-

pared to optimized implementations on CPU (used as an ac-

celerator), GPU and Xeon Phi, only slightly underperforming

the latter when the memory transfers become the bottleneck.

Further customizations of the memory controller inside Xilinx

SDAccel would improve the performance. Based on their low

power consumption, FPGAs increase the system-level dynamic

energy efficiency in all our test configurations, by up to 9.5x.

The new design approach presented here to decouple

OpenCL work-items on FPGAs, can be extended to other

algorithms that resemble the rejection methods, with data-

dependent branches and dynamic for-loop exit conditions.

In this regard, the DecoupledWorkItems function in List-

ing 1, as well as the Transfer block in Listing 4, can be easily

reused or customized to any application. The designer just

needs to rewrite the application function in Listing 2, the same

way it is done on other platforms like GPUs and Xeon Phi.

Besides, the adapted implementation of the Mersenne-Twister

algorithm in Listing 3 shows how small modifications give

more external control on an existing block inside a pipelined

architecture, without affecting the maximum throughput.
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