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1.  Introduction

The microwave-assisted synthesis of materials differs fundamentally from conventional synthesis in terms of 
the heating mechanism involved. In a microwave oven, heat is generated within the volume of the sample by the 
microwaves interacting with the material. Microwave energy heats material on a molecular level, resulting in 
uniform heating, whereas conventional heating systems heat material from the outside to the inside, resulting in 
steep thermal gradients.

The choice of microwave heating in the fabrication of thermoelectric materials has been motivated not only 
by its lower synthesis cost but also its fast heating rates, which can help preserve the micro- and nanostructure of 
materials, thereby preventing grain growth. Microwave synthesis is advantageous because microwaves interact 
directly with ions or molecules in solution and/or with solid phases dispersed in liquid media. In fact, it should be 
noted that the efficiency in the conversion capacity of microwave energy into thermal energy is governed by the 
physical variables of loss tangent, relaxation time and penetration depth [1–4].

Calcium titanate (CaTiO3 or CT), a versatile material which is one of the major phases in synroc (synthetic 
rock), is widely used in the immobilization of high level nuclear waste. There are numerous theoretical and exper
imental studies on the synthesis, characterization and functional performance of CT. One of the most outstand-
ing studies on functional CT involves praseodymium-doped CT. It has long been known as a bright red emitting 
phosphor characterized by a single and very intense emission peak close to the coordinates of the ‘ideal red’ color 
[5–11].

Given the wide range of existing and potential applications, significant research efforts have focused on vari-
ous synthesis routes for CT and the optimization of its properties [12–17]. Perovskite-structured CT crystals were 
initially prepared by conventional solid-state reaction, using a stoichiometric ratio of TiO2 and CaCO3 or CaO. 
This synthesis is difficult because it requires long heat treatments at high temperatures (about 1350 °C).

Microwave-assisted heating is a greener approach to synthesize materials in a shorter time (from a few min to 
several hours) while consuming less energy (a few hundred watts). Recent reports on the hydrothermal microwave 
(HTMW) synthesis of nanocrystalline titanate oxides [14, 18–21] indicate that the HTMW method is potentially 
a better route to synthesize crystalline CT powders at low temperatures and high heating rates.

The aim of this work was to synthesize CT by the HTMW method in a short time, using XRD, XANES and 
morphological analysis to examine the structural order of the synthesized materials.
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Abstract
The traditional methods to synthesize nanocrystalline materials are energy-intensive and time-
consuming. This paper describes a fast and simple route to synthesize CaTiO3, which requires just 
30 s of processing in the HTMW system to produce the crystalline orthorhombic phase of CT with 
a micro-cube-like structure. The product’s crystallinity increases along with synthesis time. A 
correlation is identified between microwave processing time and structural crystallinity.
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2.  Experimental details

Samples of single crystalline phase CaTiO3 (CT) were synthesized by reacting stoichiometric proportions of 
TiO(SO4) (Aldrich), CaCl2 · 2H2O (Merck), and KOH (Merck) by means of microwave-assisted aqueous 
precipitation [21]. All the chemicals were of higher than 99.9% purity and were used as received from the vendor. 
Samples were prepared using the following procedure. First, TiO(SO4) (0.01 mol) was slowly stirred into 25 ml of 
deionized water at 398 K to form TiO(OH)2. Next, a stoichiometric amount of CaCl2 · 2H2O was vigorously stirred 
into the prepared solution, resulting in a transparent solution. 50 mL of a solution of 6.0 mol l−1 KOH, which acts 
as a mineralizer, was then stirred into the prepared solution. This procedure promoted the co-precipitation of the 

Table 1.  Data to (1 2 1) plane from XRD patterns.

Sample 2θ (°) Amplitude Area

CT—30 s 33.18 689 203.09

CT—1 min 33.17 1858 619.16

CT—2 min 33.20 1881 680.68

CT—4 min 33.18 1997 681.91

CT—8 min 33.12 2044 720.53

CT—600 °C 33.21 2409 812.57

Figure 1.  FE-SEM images to CT samples: (a) CT—30 s, (b) CT—1 min, (c) CT—2 min, (d) CT—4 min, (e) CT—8 min, and  
(f) CT—600 °C.

Mater. Res. Express 4 (2017) 065014



3

S de Cássia Pereira et al

amorphous titanium oxide (TiO(OH)2) and calcium (Ca(OH)2) hydroxides to form the reaction mixture. This 
mixture was then poured into a Teflon-lined autoclave, reaching 66% of its total volume capacity and thus ensuring 
the maximum pressure efficiency. The autoclave was then sealed and placed in the domestic HTMW system, which 
operated at 2.45 GHz microwave radiation with a maximum power of 800 W. This mixture was heated at 140 °C 
under a nominal heating rate of 140 °C min−1 by direct interaction of water molecules with microwave radiation, 
and was left under a constant pressure of 250 KPa for different lengths of time. The autoclave was then allowed to 
cool naturally to room temperature. The resulting solid product was washed in water until its pH became neutral, 
and then dried at 60 °C for 24 h. The HTMW processing times were: 30 s (CT—30 s), 1 min (CT—1 min), 2 min 
(CT—2 min), 4 min (CT—4 min), and 8 min (CT—8 min). Two additional samples were prepared: (i) no HTMW 
processing (CT—NP), and (ii) 8 min of HTMW processing plus heat treatment at 600 °C for 2 h (CT—600 °C). 

All reactions had yields greater than 90%. Table 1 describes the synthesized samples.

Figure 2.  X-ray patterns of CT samples: (a) CT—NP, and (b) CT—600 °C, CT—8 min, CT—4 min, CT—2 min, CT—1 min, and 
CT—30 s.

Figure 3.  XANES spectra to CT samples: (a) CT—30 s, (b) CT—1 min, (c) CT—2 min, (d) CT—4 min, (e) CT—8 min, and (f) 
CT—600 °C.

Mater. Res. Express 4 (2017) 065014
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3.  Results and discussion

The FEG micrographs of CT samples in figure 1 show a cube-like morphology, which remained unchanged as the 
synthesis time was increased from 0.5 to 8 min.

The samples obtained in a short processing time presented a few cube-like structures dispersed in a mass of mat
erial of amorphous morphology. However, the morphology of the CT particles changed as a function of reaction time. 
Only a small part of the particles of the CT—30 s sample showed a cubic morphology, while the remainder exhibited 
an undefined morphology. However, upon increasing the synthesis time, the morphology became more regular and 
cubic, indicating surface reorganization instead of other nucleation events. Each nanocube ‘docks’ with the nearest 
nanocube, and eventually they become aligned, producing cube-like superstructures [14, 21]. Most of the particles 
of the CT—8 min sample showed a cubic morphology, with only a few displaying an undefined morphology. These 
results may indicate that the CT particles underwent dissolution and precipitation under HTMW conditions.

Figure 2(a) shows x-ray diffraction patterns of CT samples before undergoing HTMW processing. Note the 
peaks corresponding to CT phase, although other phases are also present. It was possible to identify the presence 
of crystalline phases of CaCO3, TiO2, CaO, and CaTiO3.

When the samples were subjected to HTMW processing, CaTiO3 became the main phase.
In HTMW processing, the microwaves coupled with the rotational barrier of water result in uniform heating of the 

solution. Thus, the phases present before HTMW processing become solubilized, which enables them to interact and 
form CaTiO3. The XRD data reveal that HTMW processing is fundamental for the formation of CaTiO3 in such a short 
time. Figure 2(b) shows XRD diffractograms of CT samples subjected to HTMW treatment for different lengths of time. 
As can be seen, a mere 30 s sufficed to obtain only CT phase. This led to the formation of the first cube-like structures.

As the processing time increases, so do the number of effective particle collisions, producing irreversibly ori-
ented attachments that provide favorable thermodynamic and kinetic conditions for CT shaping, which is typical 
of a bottom-up process [1, 4]. Figure 2(b) depicts the XRD pattern of the CT samples after HTMW processing. 
All the samples presented only the orthorhombic perovskite-type phase (ICDD PDF card no. 22-0153-Pbnm).

Figure 4.  TEM images to CT sample: CT—2 min.

Mater. Res. Express 4 (2017) 065014
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The diffraction peaks differ according to the duration of synthesis. We have created a table that presents some 
data of the 100% CT peak (1 2 1 plane—2θ ≅ 33.1°). These data confirm the evolution of the crystalline phase.

Note that there is an increase in the intensity and in the area of the 100% peak. This increase confirms the 
crystallinity evolution observed in SEM images.

XANES spectra at the Ti K-edge have been shown to be highly sensitive to the symmetry of the titanium site, 
while providing information about the electronic state and chemical bond of a specific atom. Previous XANES 
results for titanate powders revealed the coexistence of two types of environments for titanium, namely, a 5-fold 
(TiO5) square-based pyramid and a 6-fold coordination (TiO6) octahedron [22–25]. The crystalline phase of CT 
is related to the presence of TiO6 clusters, whereas the amorphous phase of CT is related to the presence of TiO5 
clusters. Figure 3 shows XANES spectra of the CT samples.

Fully structurally ordered CT—600 °C (figure 3(f)) presents only 6-fold or octahedral coordination (TiO6), yield-
ing three peaks in the pre-edge region. The pre-edge feature is due to transitions of this mixed p–d orbital. On the other 
hand, the presence of a intense peak in the pre-edge (peak A) region of these samples when compared with the crystalline 
ones may also be interpreted as indicating the existence of more than one environment around the titanium atoms [25].

The variation in the height of the pre-edge peak A is a strong indication of a significant change in the 
coordination environment of titanium atoms in the CT samples [22, 23]. In figure 3(a), note that the height of 
the pre-edge A peak shows a maximum for the more disordered sample (CT—30 s) and a minimum for the fully 
ordered sample (CT—600 °C), as expected.

Figure 4(a) shows TEM micrographs of the CT samples, which were recorded on a JEOL JEM-2100 transmission 
electron microscope (TEM) coupled to an energy dispersive spectrometer (EDS).

The CT particles obviously consist of two different types of particles, one with an undefined morphology and 
the other with a cube-like morphology. Fourier transform of the image of the region with undefined morphology 
(figure 4(b)) shows a purely amorphous material with only diffuse halo rings but with no sign of diffraction spots. 
On the other hand, the region with cube-like morphology (figure 4(c)) shows diffraction spots, which is consistent 
with crystalline material.

The mechanism of formation of CT by the hydrothermal method is discussed in the literature [13, 21, 26, 27]. 
The high pH level during synthesis helps to stabilize the material. Initially, amorphous CT is formed, with HTMW 

Figure 5.  Illustration showing growth mechanisms to CT formation.

Mater. Res. Express 4 (2017) 065014
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processing triggering the dissolution/recrystallization process, i.e. crystal growth. We believe that the kinetics of 
formation of the cubes of our material is very fast. The cubes that are formed after the amorphous material dis-
solves are already large, and no other geometric forms are visible that could confirm the mechanism of formation. 
However, the formation of the cubes is visible in all the parts of the figure 1. The cubes that are formed show sides 
that are still being constructed, as is clearly indicated by the presence of rectangular plates on the faces. At the same 
time, the amorphous phase gradually decreases, indicating the onset of the mechanism of Ostwald ripening. As 
the processing time is extended, the cubes become more uniform, without deformed sides. HTMW processing 
enables the production of crystalline CT with a cube-like morphology (figure 5).

4.  Conclusions

CT was successfully obtained by the HTMW method. Just 30 s of processing in the HTMW system sufficed to 
produce the crystalline orthorhombic phase of CT. This fast synthesis resulted in crystalline and amorphous CT. 
Increasing the processing time in the HTMW system reduced the amount of amorphous CT while increasing the 
amount of crystalline CT. The micrographs revealed that the CT obtained by HTMW had a cubic morphology, 
while the TEM images confirmed that the region with undefined morphology was amorphous. Therefore, the 
HTMW method can be used for the synthesis of perovskite-structured CT.
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