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a b s t r a c t

Different materials have been proposed as active electrode in electrochemical capacitors, including
conducting polymers. Among them, several papers describe the use of polyaniline and its derivatives for
such purpose. However, the use of poly(o-methoxyaniline), a polyaniline derivative, in ionic liquid
electrolytes as pseudocapacitors has never been proposed in the literature. Therefore, the objective of
this work is to investigate the electrochemical properties and stability of POMA casting film in ionic
liquid electrolyte as electrode for supercapacitors. Cyclic voltammetry and galvanostatic charge/
discharge experiments have been used to analyze the behavior of the films. The results show that POMA
films have high specific capacitance and good electrochemical stability during 3000 cycles. Its initial
value is 260 F g�1 in a mixture of ionic liquid and polyethylene glycol (80:20 v/v). The specific energy
shows 70% retention from the initial value after 3000 cycles. Furthermore, the specific power remains
remarkably stable during 3000 cycles, as well as the coulombic efficiency, which is about 99%. For these
reasons this work opens up the possibilities of using conducting polymers in ionic liquids and illustrates
its good behavior and stability for supercapacitor application.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Since their discovery, more than three decades ago, conducting
polymers (CPs) have received a lot of attention involving the basic
aspects of their behavior as well as their use to build different de-
vices for technological applications. The number of papers pub-
lished in scientific literature about these materials has grown
significantly due to their great versatility in application [1,2].
Starting at the 90's, several studies of the properties of CPs have
been reported looking for their technological applications. Among
them, one of the most promising has been the use of the poly(p-
Phenylene Vinylene), PPV, for light emitting diodes proposed by
Burroughes et al. [3]. Since then, the conducting polymers have be
effectively employed in different applications such as: electro-
chemical batteries [4e7], supercapacitors [8e12], electrochromic
devices [13e17] and sensors [18e22].

Among the electrochemical devices, supercapacitors have been
extensively explored as promising energy storage [23e29]. Super-
capacitors have fundamentally the same principles of a
conventional capacitor and can been divided in two kinds accord-
ing to the mechanism of charge storage: Electrical double layer
supercapacitor (EDLCs) and electrochemical capacitors. In EDLCs,
there is no electron transfer thorough the interface and the
capacitance arises from the charge accumulation at the electrode/
electrolyte interface. Electrochemical capacitors are based on
faradaic reactions of the electrode, then, there is a charge transfer at
the interface. The energy storage occurs during the charge and
discharge processes. The later devices are interesting because they
present higher capacity per gram than EDLCs. Among the materials
investigated as supercapacitor electrodes, conducting polymers are
the most promising as they possess good electrical conductivity,
redox pseudocapacitance in addition to double layer capacitance,
and low cost [30e32].

One of the conducting polymers that has been receiving much
attention to be used into supercapacitors is polyaniline (PANI)
which has a good chemical stability and low cost. Despite the
numerous advantages of PANI, its use is limited because it is
insoluble in common solvents. Due to this aspect, it is proposed the
substitution of the aromatic ring of aniline with electron donating
groups to improve its solubility. In this sense, poly (o-methox-
yaniline) (POMA) presents good processability associated with
similar electrochemical and electronic behavior of PANI. These
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materials can be positively charged (p-doped polymer) and the
double layer capacitance along with the pseudocapacitance
contribute to the total capacitance [33e35].

Supercapacitor devices are usually built using liquid electrolytes
(both aqueous and/or organic) [36,37]. In this regard, many papers
have focused on the use of ionic liquids (IL's) as impregnating
electrolyte for electrochemical supercapacitors, with the purpose of
increasing its energy density [38e40]. Liew et al. [41] evaluated the
performance of 1-butyl-3-methylimidazolium iodide (BmImI) ionic
liquid and ammonium acetate (CH3COONH4) added PVA (poly (vi-
nyl alcohol))-based ion conductors for EDLCs using electrochemical
measurements. The authors observed that the addition of ionic
liquid can enhance the electrochemical stability of polymer elec-
trolytes with the operational current higher than liquid-free poly-
mer electrolyte. The specific capacitance increase of 0.14 F g�1 to
52.8 F g�1 with the IL addition, this increase of capacitance was
attributed to high ionic conductivity of polymer electrolyte. Life
cycle tests were carried out to determine the stability of the cell at
high charging and discharging cycles. After 500 cycles, the
coulombic efficiency of the EDLC with IL maintain the capacitance
above 80% of its initial value. The energy density and power density
of the cell drop gradually from first cycle to 200th cycles, however,
these values almost remain unchanged above the 300th cycles.
These compounds, IL's, are salts that have a melting point below
100 �C and low vapor pressure, comprising ions and characterized
by low reticular energy due to the combination of a large cation
with a delocalized charge anion. These substances exhibit good
ionic conductivity and wide electrochemical window stability
[42,43].

Moreover, using ILs as electrolyte allows also the electrolyte
composition optimization to meet adequate performance re-
quirements for supercapacitors as operating cell voltage, and
temperature range. The dilution of IL's in secondary solvent de-
creases the solution viscosity and increases the ionic conductivity
since the ions solvated. In this sense, polyethylene glycol (PEG) is a
good alternative due to its low cost and high processability.
Furthermore, ethylene glycol has been used in many other appli-
cations such as a catalyst, supporting electrolyte, and as stabilizer
[37].

Considering that literature about the conducting polymer
using ionic liquid as electrolyte are limited to a few studies
[44e46], and only one paper describing POMA/IL electrolyte
interface has been found [34], this work describes the electro-
chemical performance of poly (o-methoxy aniline) film prepared by
casting technique in ionic liquid electrolyte. The ionic liquid 1-
butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4) was used
in different concentrations in a mixture with polyethylene glycol
(PEG).

2. Experimental

2.1. Materials and methods

The poly(o-methoxy aniline), also known as anisidine, has been
synthesized by chemical direct oxidation of the monomer as
described by Mattoso [35]. The POMA solution was prepared by
dissolving 20 mg of POMA in a mixture of H2O and acetonitrile
(ACN) (J. T. Baker) in a proportion of 59:1 (v/v). ACN was used to
enhance the solubility of the polymer in water. All the reactants
were supplied by Sigma-Aldrich, and anisidine monomer was pu-
rified by distillation under vacuum.

POMA electrodes were prepared by casting POMA from the so-
lution onto glass substrates covered with indium tin oxide (ITO)
(area ¼ 1 cm2). These substrates were previously etched with a
H2O2/NH4OH/H2O [1:1:5 (v/v)] solution and ultrapure water (Milli-
Q system) to prepare a hydrophilic surface. 250 mL of POMA solu-
tionwere deposited on ITO electrode leading of polymeric filmwith
of 3.6 10�5 g.

1-Butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4) ionic
liquid was synthesized as previously described [47,48].

2.2. Characterization

The films were characterized by visible spectroscopy using
UVeVISeNIR spectrophotometer (Cary model 5G) and attenuated
total reflectance Fourier transform infrared (ATR-FTIR) spectra us-
ing Varian 640-IR FTIR spectrometer in the scanning range of
4000e600 cm�1. The film morphologies were studied using Field
Emission Gun - Scanning Electron Microscopy (FEG-SEM) micro-
graphs (ZEISS model 105 DSM940A) working at 10 keV.

Electrochemical experiments were carried out in a three-
electrode glass cell using an Autolab PGSTAT 302 N. The measure-
ments were performed in different proportions of ionic liquid in
polyethylene glycol (PEG). As a reference and auxiliary electrodes,
an Ag pseudo-reference electrode and Pt sheet (area ¼ 1 cm2) were
used, respectively. The electrochemical stability of the electrode
has been studied using galvanostatic, and cyclic voltammetry. All
measurements were carried out at room temperature in different
proportions of ionic liquid in PEG. Galvanostatic charge/discharge
cycling, the load current was 4.5 A g�1. Cyclic voltammetry char-
acteristics of films were recorded after each 100 cycles of charge/
discharge cycles at 20 mV s�1 from �0.2e0.3 V versus Ag.

Besides, the stability tests were also investigated using ATR-
FTIR, FEG-SEM, and contact angle (Ram�e-Hart Model 21AC Stan-
dard Goniometer) measurements.

3. Results and discussions

Fig. 1a present UVeVIS measurements, that exhibit a typical
absorption peak around 450 nm due to the polaron bands indi-
cating the formation of the emeraldine salt doped state of POMA in
agreement with literature [35,49]. The voltametric behavior of
POMA in pure ionic liquid, Fig. 1b, presents one redox couple
located between 0 and 0.1 V attributed to the redox transition of
POMA between a semiconducting state (leucoemeraldine form)
and a conducting state (polaronic emeraldine form), which results
is in agreement to literature [50].

The FTIR spectrum of POMA, Fig. 2a, shows the peaks charac-
teristic of POMA [51,52]. The peaks appeared at, 1146, 1218,
1425 cm�1 and 1715 cm�1, and could be attributed to CeH out of
plane bending vibration, CeN stretching vibrating modes for
benzenoid and quinoid rings of primary aromatic amines, C]N (or)
C]C stretching modes in the aromatic compounds, respectively.
The presence of eOCH3 group in POMA is related to the peak
1218 cm�1. The peaks between 800 and 600 cm�1 reveal the
occurrence of 1, 2- substitution on aromatic ring.

The vibrational spectrum of BMI.BF4 can be observed at Fig. 2b.
In brief, the spectrum shows that the peak at 1441 cm�1 which is
attributed to CH2 bending and C-aromatic ring, CeCH3 and the side
chain eCH2eCH2eCH2e groups are related to 1550, 1441 and
734 cm�1, respectively. All those bands are associated with [BMI]þ.
The peaks at 1037 cm�1 is attributed to the stretching vibration of
BeF bands of [BF4]-. Finally, the FTIR spectrum of PEG, Fig. 2c, is
characterized by the OeH bending vibration at 1307 cm�1, the
deformation vibration of the CeH bonds at 1438 and 1380 cm�1, the
bending vibration of the OeH at 1234 and 1178 cm�1 and the CeO
stretching vibration between 1100 and 1000 cm�1. Both, BMI.BF4
and PEG spectra are agreement with the literature [53e55].

The electrochemical behavior of the POMA in different con-
centrations of ionic liquid in polyethylene glycol are presented in



Fig. 1. (a) UVeVIS spectra and (b) Cyclic voltammogram of POMA casting film on ITO substrates. Measurements were made in pure ionic liquid at 20 mV s�1 at 25 �C.

Fig. 2. ATR-FTIR spectra of (a) POMA casting film (b) BMI.BF4 and (c) PEG.
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Fig. 3a. Fig. 3a presents the cyclic voltammograms (CV) of POMA in
20, 40, 60 e 80% of ionic liquid using PEG as solvent. Analyzing
Fig. 3a, it is possible to observe that the CV profile of POMA changes
with the concentration of ionic liquid in the solvent. The pro-
portions from 20 to 60% of IL in PEG show a capacitive CV finger-
print, while, for pure ionic liquid electrolyte, the voltammetric
profile is neatly faradaic. Moreover, an increase in the specific
current for 80% IL in PEG can be observed. As a consequence, the
specific capacitance values calculated from the voltammetric
curves present the same kind of behavior. The calculated values are
close to 170 F g�1 up to 60% IL and it increases to 236 F g�1 for the
solution 80% IL. The relatively low values of specific capacitance
observed for 20e60% IL in PEG could be attributed to small
amounts of ionic species in the medium reflecting in the specific
capacitance values. In the same way, for 100% IL, the specific
capacitance is low duo to the strong interactions between the BMIþ

and BF4� leading to a decrease in the ionic conductivity. The high
value observed for 80% IL/PEG, which corresponds to a molar
fraction (xBMI.BF4) of 0.50, could be explained by the solvation of IL
in PEG and the solution viscosity [56]. Silva et al. [56] studied the
solvent effects on electrolyte transport properties of BMI.BF4 binary
solutions with PEG. The authors found that the maximum ionic
conductivity values is observed for xBMI.BF4 0.50 at room tem-
perature and attributed this results to two factors: the break of the
strong coulombic interactions and solvation of ions BMIþ and BF4�,
suggesting that the ionic conductivity is not only related to the
viscosity but also to the ion-ion, ion-solvent and solvent-solvent
interactions.

In order to further understand the high value of specific
capacitance for 80% IL/PEG we carried out galvanostatic charge/
discharge measurements. Fig. 4a presents the charge/discharge
curves at different current densities for POMA casting film. All of
them exhibit two charge/discharge stages in the potential-time
curve: 0.3 to 0 and 0 to �0.2 V, respectively. The first stage could
be attributed to the electric double-layer capacitance of the elec-
trode [49]. During the later stage, the combination of electric
double-layer capacitance and Faradaic capacitance could be
responsible for the charge/discharge duration [57]. This change in
the slope of the curve occurs at the same region in the voltam-
mograms where the oxidation (reduction) potential peak occurs
due to the intercalation (deintercalation) process (Fig. 3a)
[23,57,58]. Analysing the specific capacitance (Fig. 4b) calculated
from charge/discharge curves, it can be observed that the specific
capacitance values decrease as the applied current density increase.
These results are an indication that the ion diffusion resistance is
higher as the applied current density is increased. The values for
the calculated ohmic drop (IR drop) are presented in Table 1.

Fig. 4c presents both the amount of energy and the specific



Fig. 3. (a) Cyclic voltammogram and (b) Specific capacitance of POMA film in different
proportions of ionic liquid in PEG. Measurements were made at 20 mV s�1 at 25 �C.
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power that is stored in this material normalized by the active mass.
According to Snook [31] and, more recently, to Abdelhamid [30],
conducting polymer-based supercapacitors devices are designed to
be a bridge in the gap between the existing capacitors and batteries.
Then they are materials have intermediate specific energy and high
specific power. Analysing Fig. 4c, it can be observed that the values
of specific energy and power are about 3.6 Wh kg�1 and
800 W kg�1, respectively which are close to those values described
for different supercapacitors in literature showing that POMA
casting films are promising materials for supercapacitor
application.

For technological applications, not only a high specific capaci-
tance, intermediate specific energy and high specific power are
Fig. 4. Charge/Dicharge characterization of POMA cast film in solution of 80% IL. (a) Charge-
power obtained from CD profiles at different current densities at 25 �C.

Table 1
IR drop, specific capacitance, specific energy and specific power values at different curre

Current density
(A g�1)

IR drop
(V)

Specific Capacit
(F g�1)

4.5 0.041 261
6.0 0.052 252
7.5 0.064 240
9.0 0.077 234
necessary. A high cyclability is also required, i.e., electrochemical
aging stability. Analyzing those data in Fig. 4, we choose to inves-
tigate the electrochemical aging of the films using galvanostatic
charge/discharge experiments at a current density of 4.5 A g�1 and
a potential range between �0.2 V and 0.3 V (vs. Ag). Fig. 5a and b
presented the galvanostatic charge/discharge curves and the cyclic
voltammetries before and after 3000 cycles of aging process. As can
be observed in Fig. 5a, there is a small change in the slope of the
discharge part of the curve after 3000 cycles. Besides, the CV pro-
files (Fig. 5b) presents similar behavior during the aging process.

Using the data in Fig. 5, the specific capacitance based on POMA
as a function of number of cycles are presented in Fig. 6. The con-
ducting polymer material electrode exhibited excellent stability
over the entire aging experiment. The specific capacitance at the
beginning of charge/discharge measurement was 260 F g�1 and,
after 3000 cycles, this value falls down to 157 F g�1. These results
indicate that the specific capacitance retention of POMA is 60.5%
after 3000 cycles. It is important to stress that the most significant
change in the specific capacitance occurs during the first 1000 cy-
cles. After that, the value of SC falls down additionally only 15%.

Furthermore, we investigate the specific energy, specific power
and the coulombic efficiency during the long-term cycling stability
of POMA which are shown in Fig. 7. The energy (Fig. 7a, black
squares) at the beginning of aging process is 3.7 Wh Kg�1 and, after
3000 cycles, the value drops down to 2.6 Wh Kg�1, which means a
70% of energy retention. The specific power (Fig. 7a) remains
discharge profiles from �0.2 V to 0.3 V, (b) specific capacitance, (c) specific energy and

nt densities.

ance Specific Energy
(Wh Kg�1)

Specific Power
(W Kg�1)

3.063 380.270
3.378 579.138
3.413 768.030
3.435 951.397



Fig. 5. (a) Charge-discharge profiles from �0.2 V to 0.3 V, (b) Cyclic voltammogram for
POMA cast film during 3000 cycles in solution of 80% IL.
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remarkably stable during 3000 cycles, as well as the coulombic
efficiency (Fig. 7b). The coulombic efficiency of POMA film retained
nearby of 99% indicating an excellent reversibility of the process. In
conclusion, all the results together allow us to propose that POMA
casting films in IL are a promising material for supercapacitor
application.

A complete description of the degradation process of POMA in
ionic liquid þ PEG is beyond the scope of this work, but some hy-
pothesis to explain the obtained behavior can be proposed. Fig. 8
presents the IR spectra, contact angle FEG-SEM images for flash
and electrochemical aged samples.

From the FTIR spectra, Fig. 8a, we can observed that, after 3000
cycles, the appearance of a band at 1037 cm�1 which could be
attributed to the stretching vibration of BeF bands of BF4� anion of
IL. It is also important to consider that both ions of the ionic liquid
are large and there is a low probability that these ions can inter-
calate in the polymers chains as occurs for POMA investigated in
common salts, such as LiClO4 [12]. In those work [12], investigating
POMA casting samples, it was observed an important degradation
during electrochemical aging measurements in 0.1 M LiClO4
acetonitrile solution. It was found that POMA samples presents a
continuous degradation as the number of aging cycles are increased
resulting in an 80% decrease from the initial specific capacitance
value after 3000 cycles. It is well established that in conducting
polymers, the oxidation (reduction) processes leads to the inter-
calation (deintercalation) of counter ions to compensate the
generated charge in the material. Several papers [30,31,59] in the
literature attribute such decrease to a reversible change in the
polymer volume at each redox cycles. This change is associated to
the large volume of the solvated ions when they intercalate. In the
Fig. 6. Specific capacitance aging for POMA casting film during 3000 cycles of charge/
discharge measurements in solution of 80% IL.
present case, considering the large volume of the ions of the ionic
liquid, a much more severe effect on the electrochemical deacti-
vation could be expected if these ions intercalate into the polymer.
As can be observed in Figs. 6e8, such decrease does not occur,
although there is a large amount of ions from the ionic liquid on the
sample.

In a second experiment, Fig. 8b, we measured the contact angle
of the ionic liquid on the sample. Contac angle measurements are
widely employed to determine indirectly solid-liquid interfacial
tensions. It is well known, from Young's approach, that the total
surface tensions can be expressed as the sum of dispessive and non-
dispersive intermolecular forces components [60]. Interestingly the
PEG:BMI.BF4 (80%) electrolyte contact angle of the polymer in the
first cycle was not significantly different (26.4�) than that of the
value measured after the 3000 cycles (29.6�), indicating that sur-
face wettability does not changed after 3000 cycles [61]. Then, it is
possible to propose that there is not any important change in the
polymer wettability which indicates also there is not any charge
accumulation in the material or important material degradation.
Finally, we measured images from the sample surface using FEG-
SEM technique (Fig. 8c). Again, it was not observed any signifi-
cant change in the surface morphology. In a previous work, for
those samples where an electrochemical degradation occurs, there
is important change comparing flash and aged POMA samples [12].
Then, the result here presented at Fig. 8c is an indication that a
degradation does not occurs, in agreement for those data from
Figs. 6 and 7. Then, considering all the results and comparing with
those previously published one possible explanation for these re-
sults is the absence of intercalation of counter ions into the polymer
Fig. 7. Charge/Dicharge characterization of POMA cast film. (a) specific energy and
power and (b) Coulombic efficiency during 3000 cycles in solution of 80% IL.



Fig. 8. (a) FTIR spectra, (b) contact angles and (c) SEM micrographs of POMA at 1st cycle and 3000th cycle.
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chains during the redox process duo to the high size of ions. In
other words, the results indicate that the in this case the mecha-
nism of charge accumulation on film appears at the interface be-
tween a surface of conducting electrode and an adjacent liquid
electrolyte as a double layer effect. The large value obtained for the
capacitance could, then, be associated to the large area surface.

4. Conclusions

In this paper, the electrochemical properties of POMA casting
film in ionic liquid electrolyte have been studied. The results show
that POMA films have high specific capacitance, 260 F g�1 for 80% of
BMI.BF4 in PEG, and good electrochemical stability during 3000
cycles. The specific energy shows 70% of retention from the initial
value and the specific power remains remarkably stable during
3000 cycles, as well as the coulombic efficiency in which retained
nearby of 99%. From the data on the literature, this is the first report
on conducting polymer films in an ionic liquid and polyethylene
glycol electrolyte. The results suggest that charge accumulation is a
double layer effect. This work opens up the possibilities of using
conducting polymers in ionic liquids and illustrating the good
behavior and stability for supercapacitor application.
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