High-performance energy storage of poly (o-methoxyaniline) film using an ionic liquid as electrolyte

Chemistry Dept., Federal University of São Carlos, C.P. 676, 13560-970, São Carlos, SP, Brazil

ARTICLE INFO

Article history:
Received 22 June 2017
Received in revised form 24 August 2017
Accepted 5 November 2017
Available online 7 November 2017

Keywords:
Conducting polymers
Poly (o-methoxyaniline)
Supercapacitors
Ionic liquid

Abstract

Different materials have been proposed as active electrode in electrochemical capacitors, including conducting polymers. Among them, several papers describe the use of polyaniline and its derivatives for such purpose. However, the use of poly(o-methoxyaniline), a polyaniline derivative, in ionic liquid electrolytes as pseudocapacitors has never been proposed in the literature. Therefore, the objective of this work is to investigate the electrochemical properties and stability of POMA casting film in ionic liquid electrolyte as electrode for supercapacitors. Cyclic voltammetry and galvanostatic charge/discharge experiments have been used to analyze the behavior of the films. The results show that POMA films have high specific capacitance and good electrochemical stability during 3000 cycles. Its initial value is 260 F g⁻¹ in a mixture of ionic liquid and polyethylene glycol (80:20 v/v). The specific energy shows 70% retention from the initial value after 3000 cycles. Furthermore, the specific power remains remarkably stable during 3000 cycles, as well as the coulombic efficiency, which is about 99%. For these reasons this work opens up the possibilities of using conducting polymers in ionic liquids and illustrates its good behavior and stability for supercapacitor application.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since their discovery, more than three decades ago, conducting polymers (CPs) have received a lot of attention involving the basic aspects of their behavior as well as their use to build different devices for technological applications. The number of papers published in scientific literature about these materials has grown significantly due to their great versatility in application [1,2]. Starting at the 90’s, several studies of the properties of CPs have been reported looking for their technological applications. Among them, one of the most promising has been the use of the poly(p-Phenylene Vinylene), PPV, for light emitting diodes proposed by Burroughes et al. [3]. Since then, the conducting polymers have been effectively employed in different applications such as: electrochemical batteries [4–7], supercapacitors [8–12], electrochemical devices [13–17] and sensors [18–22].

Among the electrochemical devices, supercapacitors have been extensively explored as promising energy storage [23–29]. Supercapacitors have fundamentally the same principles of a conventional capacitor and can be divided in two kinds according to the mechanism of charge storage: Electrical double layer supercapacitor (EDLCs) and electrochemical capacitors. In EDLCs, there is no electron transfer thorough the interface and the capacitance arises from the charge accumulation at the electrode/electrolyte interface. Electrochemical capacitors are based on faradaic reactions of the electrode, then, there is a charge transfer at the interface. The energy storage occurs during the charge and discharge processes. The later devices are interesting because they present higher capacity per gram than EDLCs. Among the materials investigated as supercapacitor electrodes, conducting polymers are the most promising as they possess good electrical conductivity, redox pseudocapacitance in addition to double layer capacitance, and low cost [30–32].

One of the conducting polymers that has been receiving much attention to be used into supercapacitors is polyaniline (PANI) which has a good chemical stability and low cost. Despite the numerous advantages of PANI, its use is limited because it is insoluble in common solvents. Due to this aspect, it is proposed the substitution of the aromatic ring of aniline with electron donating groups to improve its solubility. In this sense, poly (o-methoxyaniline) (POMA) presents good processability associated with similar electrochemical and electronic behavior of PANI.
materials can be positively charged (p-doped polymer) and the double layer capacitance along with the pseudocapacitance contribute to the total capacitance [33–35]. Supercapacitor devices are usually built using liquid electrolytes (both aqueous and/or organic) [36,37]. In this regard, many papers have focused on the use of ionic liquids (ILs) as impregnating electrolyte for electrochemical supercapacitors, with the purpose of increasing its energy density [38–40]. Liew et al. [41] evaluated the performance of 1-butyl-3-methylimidazolium iodide (BMIImI) ionic liquid and ammonium acetate (CH3COONH4) added PVA (poly (vinyl alcohol))-based ion conductors for EDLCs using electrochemical measurements. The authors observed that the addition of ionic liquid can enhance the electrochemical stability of polymer electrolytes with the operational current higher than liquid-free polymer electrolyte. The specific capacitance increase of 0.14 F g−1 to 52.8 F g−1 with the IL addition, this increase of capacitance was attributed to high ionic conductivity of polymer electrolyte. Life cycle tests were carried out to determine the stability of the cell at high charging and discharging cycles. After 500 cycles, the coulombic efficiency of the EDLC with IL maintain the capacitance above 80% of its initial value. The energy density and power density of the cell drop gradually from first cycle to 200th cycles, however, these behaviors remain unchanged above the 300th cycles. These compounds, IL's, are salts that have a melting point below 100 °C and low vapor pressure, comprising ions and characterized by low reticular energy due to the combination of a large cation with a delocalized charge anion. These substances exhibit good ionic conductivity and wide electrochemical window stability [42,43].

Moreover, using ILs as electrolyte allows also the electrolyte composition optimization to meet adequate performance requirements for supercapacitors as operating cell voltage, and temperature range. The dilution of IL's in secondary solvent decreases the solution viscosity and increases the ionic conductivity since the ions solvated. In this sense, polyethylene glycol (PEG) is a good alternative due to its low cost and high processability. Furthermore, ethylene glycol has been used in many other applications such as a catalyst, supporting electrolyte, and as stabilizer [37].

Considering that literature about the conducting polymer using liquid electrolyte are limited to a few studies [44–46], and only one paper describing POMA/IL electrolyte interface has been found [34], this work describes the electrochemical performance of poly (o-methoxy aniline) film prepared by casting technique in ionic liquid electrolyte. The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4) was used in different concentrations in a mixture with polyethylene glycol (PEG).

2. Experimental

2.1. Materials and methods

The poly(o-methoxy aniline), also known as anisidine, has been synthesized by chemical direct oxidation of the monomer as described by Mattoso [35]. The POMA solution was prepared by dissolving 20 mg of POMA in a mixture of H2O and acetonitrile (ACN) (J. T. Baker) in the proportion of 59:1 (v/v). ACN was used to enhance the solubility of the polymer in water. All the reactants were supplied by Sigma-Aldrich, and anisidine monomer was purified by distillation under vacuum.

POMA electrodes were prepared by casting POMA from the solution onto glass substrates covered with indium tin oxide (ITO) (area = 1 cm2). These substrates were previously etched with a H2O2/NH4OH/H2O [1:1:5 (v/v)] solution and ultrapure water (Milli-Q system) to prepare a hydrophilic surface. 250 μL of POMA solution were deposited on ITO electrode leading of polymeric film with of 3.6 10−5 g.

1-Butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4) ionic liquid was synthesized as previously described [47,48].

2.2. Characterization

The films were characterized by visible spectroscopy using UV–VIS–NIR spectrophotometer (Cary model 5G) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra using Varian 640-IR FTIR spectrometer in the scanning range of 4000–600 cm−1. The film morphologies were studied using Field Emission Gun - Scanning Electron Microscopy (FEG-SEM) micrographs (ZEISS model 105 DSM940A) working at 10 keV.

Electrochemical experiments were carried out in a three-electrode glass cell using an Autolab PGSTAT 302 N. The measurements were performed in different proportions of ionic liquid in polyethylene glycol (PEG). As a reference and auxiliary electrodes, an Ag pseudo-reference electrode and Pt sheet (area = 1 cm2) were used, respectively. The electrochemical stability of the electrode has been studied using galvanostatic, and cyclic voltammetry. All measurements were carried out at room temperature in different proportions of ionic liquid in PEG. Galvanostatic charge/discharge cycling, the load current was 4.5 A g−1. Cyclic voltammetry characteristics of films were recorded after each 100 cycles of charge/discharge cycles at 20 mV s−1 from −0.2 to −0.3 V versus Ag.

Besides, the stability tests were also investigated using ATR-FTIR, FEG-SEM, and contact angle (Ramé-Hart Model 21AC Standard Goniometer) measurements.

3. Results and discussions

Fig. 1a present UV–VIS measurements, that exhibit a typical absorption peak around 450 nm due to the polaron bands indicating the formation of the emeraldine salt doped state of POMA in agreement with literature [35,49]. The voltametric behavior of POMA in pure ionic liquid, Fig. 1b, presents one redox couple located between 0 and 0.1 V attributed to the redox transition of POMA between a semiconducting state (leucoemeraldine form) and a conducting state (polaronic emeraldine form), which results is in agreement to literature [50].

The FTIR spectrum of POMA, Fig. 2a, shows the peaks characteristic of POMA [51,52]. The peaks appeared at, 1146, 1218, 1425 cm−1, and 1715 cm−1, and could be attributed to C=O out of plane bending vibration, C−N stretching vibrating modes for benzzenoid and quinoid rings of primary aromatic amines, C=N (or) C=C stretching modes in the aromatic compounds, respectively. The presence of −OCH3 group in POMA is related to the peak 1218 cm−1. The peaks between 800 and 600 cm−1 reveal the occurrence of 1, 2-substitution on aromatic ring.

The vibrational spectrum of BMI.BF4 can be observed at Fig. 2b. In brief, the spectrum shows that the peak at 1441 cm−1 which is attributed to CH2 bending and C-aromatic ring, C−CH3 and the side chain −CH2−CH2−CH2− groups are related to 1550, 1441 and 734 cm−1, respectively. All those bands are associated with [BMI]+. The peaks at 1037 cm−1 is attributed to the stretching vibration of B−F bands of [BF4]−. Finally, the FTIR spectrum of PEG, Fig. 2c, is characterized by the O−H bending vibration at 1307 cm−1, the deformation vibration of the C−H bonds at 1438 and 1380 cm−1, the bending vibration of the O−H at 1234 and 1778 cm−1 and the C−O stretching vibration between 1100 and 1000 cm−1. Both, BMI.BF4 and PEG spectra are agreement with the literature [54–56].

The electrochemical behavior of the POMA in different concentrations of ionic liquid in polyethylene glycol are presented in
Fig. 3a. Fig. 3a presents the cyclic voltammograms (CV) of POMA in 20, 40, 60 e 80% of ionic liquid using PEG as solvent. Analyzing Fig. 3a, it is possible to observe that the CV profile of POMA changes with the concentration of ionic liquid in the solvent. The proportions from 20 to 60% of IL in PEG show a capacitive CV fingerprint, while, for pure ionic liquid electrolyte, the voltammetric profile is nearly faradaic. Moreover, an increase in the specific current for 80% IL in PEG can be observed. As a consequence, the specific capacitance values calculated from the voltammetric curves present the same kind of behavior. The calculated values are close to 170 F g$^{-1}$ up to 60% IL and it increases to 236 F g$^{-1}$ for the solution 80% IL. The relatively low values of specific capacitance observed for 20–60% IL in PEG could be attributed to small amounts of ionic species in the medium reflecting in the specific capacitance values. In the same way, for 100% IL, the specific capacitance is low due to the strong interactions between the BMI$^+$ and BF$_4$ leading to a decrease in the ionic conductivity. The high value observed for 80% IL/PEG, which corresponds to a molar fraction (xBMI.BF$_4$) of 0.50, could be explained by the solvation of IL in PEG and the solution viscosity [56]. Silva et al. [56] studied the solvent effects on electrolyte transport properties of BMI.BF$_4$ binary solutions with PEG. The authors found that the maximum ionic conductivity values is observed for xBMI.BF$_4$ 0.50 at room temperature and attributed this results to two factors: the break of the strong coulombic interactions and solvation of ions BMI$^+$ and BF$_4$, suggesting that the ionic conductivity is not only related to the viscosity but also to the ion-ion, ion-solvent and solvent-solvent interactions.

In order to further understand the high value of specific capacitance for 80% IL/PEG we carried out galvanostatic charge/discharge measurements. Fig. 4a presents the charge/discharge curves at different current densities for POMA casting film. All of them exhibit two charge/discharge stages in the potential-time curve: 0.3 to 0 and 0 to −0.2 V, respectively. The first stage could be attributed to the electric double-layer capacitance of the electrode [49]. During the later stage, the combination of electric double-layer capacitance and Faradaic capacitance could be responsible for the charge/discharge duration [57]. This change in the slope of the curve occurs at the same region in the voltammograms where the oxidation (reduction) potential peak occurs due to the intercalation (deintercalation) process (Fig. 3a) [23,57,58]. Analysing the specific capacitance (Fig. 4b) calculated from charge/discharge curves, it can be observed that the specific capacitance values decrease as the applied current density increase. These results are an indication that the ion diffusion resistance is higher as the applied current density is increased. The values for the calculated ohmic drop (IR drop) are presented in Table 1.

Fig. 4c presents both the amount of energy and the specific capacitance for the considered electrolytes.
power that is stored in this material normalized by the active mass. According to Snook [31] and, more recently, to Abdelhamid [30], conducting polymer-based supercapacitors devices are designed to be a bridge in the gap between the existing capacitors and batteries. Then they are materials have intermediate specific energy and high specific power. Analysing Fig. 4c, it can be observed that the values of specific energy and power are about 3.6 Wh kg\(^{-1}\) and 800 W kg\(^{-1}\), respectively which are close to those values described for different supercapacitors in literature showing that POMA casting films are promising materials for supercapacitor application.

For technological applications, not only a high specific capacitance, intermediate specific energy and high specific power are necessary. A high cyclability is also required, i.e., electrochemical aging stability. Analyzing those data in Fig. 4, we choose to investigate the electrochemical aging of the films using galvanostatic charge/discharge experiments at a current density of 4.5 A g\(^{-1}\) and a potential range between –0.2 V and 0.3 V (vs. Ag). Fig. 5a and b presented the galvanostatic charge/discharge curves and the cyclic voltammetries before and after 3000 cycles of aging process. As can be observed in Fig. 5a, there is a small change in the slope of the discharge part of the curve after 3000 cycles. Besides, the CV profiles (Fig. 5b) presents similar behavior during the aging process.

Using the data in Fig. 5, the specific capacitance based on POMA as a function of number of cycles are presented in Fig. 6. The conducting polymer material electrode exhibited excellent stability over the entire aging experiment. The specific capacitance at the beginning of charge/discharge measurement was 260 F g\(^{-1}\) and, after 3000 cycles, this value falls down to 157 F g\(^{-1}\). These results indicate that the specific capacitance retention of POMA is 60.5% after 3000 cycles. It is important to stress that the most significant change in the specific capacitance occurs during the first 1000 cycles. After that, the value of SC falls down additionally only 15%.

Furthermore, we investigate the specific energy, specific power and the coulombic efficiency during the long-term cycling stability of POMA which are shown in Fig. 7. The energy (Fig. 7a, black squares) at the beginning of aging process is 3.7 Wh Kg\(^{-1}\) and, after 3000 cycles, the value drops down to 2.6 Wh Kg\(^{-1}\), which means a 70% of energy retention. The specific power (Fig. 7a) remains

![Fig. 3.](image-url) (a) Cyclic voltammogram and (b) Specific capacitance of POMA film in different proportions of ionic liquid in PEG. Measurements were made at 20 mV s\(^{-1}\) at 25 °C.

![Fig. 4.](image-url) Charge/Dicharge characterization of POMA cast film in solution of 80% IL. (a) Charge-discharge profiles from –0.2 V to 0.3 V, (b) specific capacitance, (c) specific energy and power obtained from CD profiles at different current densities at 25 °C.

<table>
<thead>
<tr>
<th>Current density (A g(^{-1}))</th>
<th>IR drop (V)</th>
<th>Specific Capacitance (F g(^{-1}))</th>
<th>Specific Energy (Wh Kg(^{-1}))</th>
<th>Specific Power (W Kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>0.041</td>
<td>261</td>
<td>3.063</td>
<td>380.270</td>
</tr>
<tr>
<td>6.0</td>
<td>0.052</td>
<td>252</td>
<td>3.378</td>
<td>579.138</td>
</tr>
<tr>
<td>7.5</td>
<td>0.064</td>
<td>240</td>
<td>3.413</td>
<td>768.030</td>
</tr>
<tr>
<td>9.0</td>
<td>0.077</td>
<td>234</td>
<td>3.435</td>
<td>951.397</td>
</tr>
</tbody>
</table>
remarkably stable during 3000 cycles, as well as the coulombic efficiency (Fig. 7b). The coulombic efficiency of POMA film retained nearby of 99% indicating an excellent reversibility of the process. In conclusion, all the results together allow us to propose that POMA casting films in IL are a promising material for supercapacitor application.

A complete description of the degradation process of POMA in ionic liquid + PEG is beyond the scope of this work, but some hypothesis to explain the obtained behavior can be proposed. Fig. 8 presents the IR spectra, contact angle FEG-SEM images for flash and electrochemical aged samples.

From the FTIR spectra, Fig. 8a, we can observed that, after 3000 cycles, the appearance of a band at 1037 cm\(^{-1}\) which could be attributed to the stretching vibration of B-F bands of BF\(_4\) anion of IL. It is also important to consider that both ions of the ionic liquid are large and there is a low probability that these ions can intercalate in the polymers chains as occurs for POMA investigated in common salts, such as LiClO\(_4\) [12]. In those work [12], investigating POMA casting samples, it was observed an important degradation during electrochemical aging measurements in 0.1 M LiClO\(_4\) acetonitrile solution. It was found that POMA samples presents a continuous degradation as the number of aging cycles are increased resulting in an 80% decrease from the initial specific capacitance value after 3000 cycles. It is well established that in conducting polymers, the oxidation (reduction) processes leads to the intercalation (deintercalation) of counter ions to compensate the generated charge in the material. Several papers [30,31,59] in the literature attribute such decrease to a reversible change in the polymer volume at each redox cycles. This change is associated to the large volume of the solvated ions when they intercalate. In the present case, considering the large volume of the ions of the ionic liquid, a much more severe effect on the electrochemical deactivation could be expected if these ions intercalate into the polymer. As can be observed in Figs. 6–8, such decrease does not occur, although there is a large amount of ions from the ionic liquid on the sample.

In a second experiment, Fig. 8b, we measured the contact angle of the ionic liquid on the sample. Contac angle measurements are widely employed to determine indirectly solid-liquid interfacial tensions. It is well known, from Young’s approach, that the total surface tensions can be expressed as the sum of dispersive and non-dispersive intermolecular forces components [60]. Interestingly the PEG:BMLBF\(_4\) (80%) electrolyte contact angle of the polymer in the first cycle was not significantly different (26.4°) than that of the value measured after the 3000 cycles (29.6°), indicating that surface wettability does not changed after 3000 cycles [61]. Then, it is possible to propose that there is not any important change in the polymer wettability which indicates also there is not any charge accumulation in the material or important material degradation. Finally, we measured images from the sample surface using FEG-SEM technique (Fig. 8c). Again, it was not observed any significant change in the surface morphology. In a previous work, for those samples where an electrochemical degradation occurs, there is important change comparing flash and aged POMA samples [12]. Then, the result here presented at Fig. 8c is an indication that a degradation does not occur, in agreement for those data from Figs. 6 and 7. Then, considering all the results and comparing with those previously published one possible explanation for these results is the absence of intercalation of counter ions into the polymer.

Fig. 5. (a) Charge-discharge profiles from –0.2 V to 0.3 V, (b) Cyclic voltammogram for POMA cast film during 3000 cycles in solution of 80% IL.

Fig. 6. Specific capacitance aging for POMA casting film during 3000 cycles of charge/discharge measurements in solution of 80% IL.

Fig. 7. Charge/Dicharge characterization of POMA cast film. (a) specific energy and power and (b) Coulombic efficiency during 3000 cycles in solution of 80% IL.
chains during the redox process due to the high size of ions. In other words, the results indicate that the in this case the mechanism of charge accumulation on film appears at the interface between a surface of conducting electrode and an adjacent liquid electrolyte as a double layer effect. The large value obtained for the capacitance could, then, be associated to the large area surface.

4. Conclusions

In this paper, the electrochemical properties of POMA casting film in ionic liquid electrolyte have been studied. The results show that POMA films have high specific capacitance, 260 F g\(^{-1}\) for 80% of BMI.BF\(_4\) in PEG, and good electrochemical stability during 3000 cycles. The specific energy shows 70% of retention from the initial value and the specific power remains remarkably stable during 3000 cycles, as well as the coulombic efficiency in which retained nearby of 99%. From the data on the literature, this is the first report on conducting polymer films in an ionic liquid and polyethylene glycol electrolyte. The results suggest that charge accumulation is a double layer effect. This work opens up the possibilities of using conducting polymers in ionic liquids and illustrating the good behavior and stability for supercapacitor application.

Acknowledgments

The support of this research by FAPESP (Grant# 2011/10897-2, 2016/05363-2, 2013/07296-2), CAPES and CNPq (Grant# 159387/2015-9) is gratefully acknowledged.

References

Fig. 8. (a) FTIR spectra, (b) contact angles and (c) SEM micrographs of POMA at 1st cycle and 3000th cycle.