Research articles

Structural, electronic, vibrational and magnetic properties of Zn$^{2+}$ substituted MnCr$_2$O$_4$ nanoparticles

K. Manjunathaa, V. Jagadeesha Angadib,*, Renan A.P. Ribeiroc, Elson Longoc, Marisa C. Oliveirad, Mauricio R.D. Bomiod, Sergio R. de Lázaroe, Shidaling Mattepanavarf, S. Rayaprolg, P.D. Babug, Mahaboob Pashaa

a Department of Physics, School of Engineering, Presidency University, Bangalore 560064, India
b Department of Physics, P.C. Jabin Science College, Hubballi 580031, India
c CDMF-USGCar, Universidade Federal de São Carlos, PO Box 676, 13565-905 São Carlos, SP, Brazil
d LSQM- Laboratório de Síntese Química de Materiais, DEMat, Universidade Federal do Rio Grande do Norte - UFRN, P.O. Box 1524, 59078-970 Natal, RN, Brazil
e Department of Chemistry, Av. Gen. Carlos Cavalcanti, no 4748, Zip-Code: 84030-000, Ponta Grossa, Paraná, Brazil
f Department of Physics, Basavaprabhu Kore Arts, Science and Commerce College, 591201 Chikodi, India
g UGC-DAE CSR, Mumbai Centre, BARC Campus, Trombay, Mumbai 400085, India

ARTICLE INFO

Keywords:
Neutron diffraction
Solution combustion method
Raman spectra
Antiferromagnetic
DFT calculations

ABSTRACT

In the present investigation, we report the structural, vibrational, electronic and magnetic properties of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles fabricated by the solution combustion method and complemented by Density Functional theory (DFT) calculations. X-ray diffraction (XRD), Neutron diffraction, X-ray photoelectron spectroscopy and Raman analysis confirms the formation of single-phase with spinel cubic structure. The average crystallite size was found to be 8 nm. The theoretical calculations suggest that Zn-doping on the MnCr$_2$O$_4$ matrix induces a unit cell contraction associated with structural distortions along both [AO$_4$] (A = Mn, Zn) and [CrO$_6$] clusters, in agreement with the experimental evidence. These structural distortions contribute to narrowing the band-gap of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ from disturbed energy levels in the vicinity of Fermi level. Field dependent magnetization confirms that the samples exhibit paramagnetic nature at 300 K and antiferromagnetic nature at 3 K. In the theoretical context, the exchange coupling constant for pure and Zn$^{2+}$ substituted MnCr$_2$O$_4$ materials were calculated confirming the dominant antiferromagnetic character of Cr-Cr interactions. The temperature dependent susceptibility reveals that the magnetic transition from paramagnetic phase to antiferromagnetic phase occurs at 19 K (T$_N$). The spin frustration factor of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ is found to be 22 K. Hence, our experimental and theoretical result suggests that synthesized materials are useful for low and high frequency applications.

1. Introduction

Spinel chromite nanoparticles have recently attracted remarkable interest due to their superior magnetic properties, showing great potential for technological applications as a solar absorber, gas sensors, dye substrate for film growth, drug delivery system, power transformers, data storage media, telecommunication systems, random access memories and radar absorbing points [1–5].

In ACr$_2$O$_4$ nanoparticles having spinel structure, the A$^{2+}$ ions occupy the tetrahedral site while Cr$^{3+}$ ions are in the center of six-fold octahedral site. The magnetic interaction for this class of materials along the A- and Cr-lattices can induce intriguing magnetic properties [6,7]. In chromite spinels with magnetic A-site cations, such as NiCr$_2$O$_4$, FeCr$_2$O$_4$, and CoCr$_2$O$_4$, collinear ferrimagnetic phase at Curie temperatures (T$_C$) can be found in the range of 70–100 K. In addition, FeCr$_2$O$_4$ and CoCr$_2$O$_4$ exhibit both spiral magnetic and ferrimagnetic ordering [7–9]. Furthermore, MnCr$_2$O$_4$ is a representative member of spinel chromites which displays a long-range ferrimagnetic spin order (T$_C$ = 41–52 K) accompanied by transition into a short-range spiral spin order at T$_S$ = 14–20 K [10].

On the other hand, chromite spinels with non-magnetic A-site atoms such as MgCr$_2$O$_4$, ZnCr$_2$O$_4$ and CdCr$_2$O$_4$ are geometrically-frustrated antiferromagnets below Neel’s temperature (T$_N$) of 12.7 K, 12.5 K, 8 K, respectively [5]. In this case, the frustration occurs from the unsatisfied
an antiferromagnetic spin arrangement along the Cr sublattice. However, some nanoparticles can present paramagnetic behavior, as reported by Mousavi et al. who synthesized ZnCr₂O₄ nanoparticles with paramagnetic behavior, although bulk ZnCr₂O₄ is antiferromagnetic, which was attributed to the finite size effects [11].

Therefore, the A-site cations play a fundamental role for tuning the main properties of spinel chromites [12–16]. Mixed composition containing both magnetic and non-magnetic A-site cations showed interesting magnetic, electronic and optical properties. In particular, Zn-modified MnCr₂O₄ spinels has attracted remarkable interest due to the intriguing magnetic properties [14–16]. However, understanding magnetic evolution and its molecular structure fingerprints remains unclear.

Innumerable synthesis methods are available for preparing spinel chromite materials such as the sol–gel method, solid state reaction, sonochemical, coprecipitation, citrate gel combustion, solution combustion and the precursor thermolysis method [3,4]. Among all the methods, the solution combustion method is very effective and suitable to prepare spinel chromate nanoparticles with good control of stoichiometry and purity. The solution combustion method was introduced by Patil [17]. This method is very easy, less time consuming, energy efficient, and requires only very low temperature to form single phase materials. In the solution combustion method, the physicochemical properties of a product such as particle size, crystallinity, composition, purity, surface area, morphology, degree and nature of the aggregate can be influenced by fuel type [13,17].

In this context, the present work aims to report the structural, electronic, vibrational, and magnetic properties of Zn²⁺ substituted MnCr₂O₄ nanoparticles obtained by the solution combustion method using a mixture of urea and glucose as fuels. Theoretical calculations were conducted to determine the magnetic interactions for this material for the first time, confirming the role of Cr sublattice interaction. A detailed discussion about the magnetic evolution based on the disorder effect induced by the substitution of Mn²⁺ ions by non-magnetic Zn²⁺ ones in Mn₀.₅Zn₀.₅Cr₂O₄ nanoparticles is also presented, unveiling the intriguing magnetic properties.

2. Experimental details

2.1. Metal nitrates (oxidizers) and reducing agents (fuels)

For the synthesis of Mn₀.₅Zn₀.₅Cr₂O₄ nanoparticles we used manganese nitrate [Mn(NO₃)₂·4H₂O] (Sigma-Aldrich, Purity 99.0%), molecular weight 251.01 g/mol; zinc nitrate [Zn(NO₃)₂·6H₂O] (Sigma-Aldrich, Purity ≥ 98.0%), molecular weight 297.48 g/mol; Chromium nitrate [Cr(NO₃)₃·9H₂O] (LOBA CHEMI, Purity 97.0%), molecular weight 485.07 g/mol; and reducing agents were glucose [C₆H₁₂O₆] (Glucomin, Purity ≥ 98.0%), molecular weight 180.156 g/mol; and reducing agents were glucose [C₆H₁₂O₆] (Glucomin, Purity ≥ 98.0%), molecular weight 180.156 g/mol; and urea [NH₂CONH₂] (Fisher Scientific, Purity 99.0%), molecular weight 60.06 g/mol.

2.2. Solution combustion method

Zn²⁺ substituted MnCr₂O₄ nanoparticles were prepared by the solution combustion method using metal nitrates and a mixture of (reducing agents) NH₂CONH₂ (urea) and C₆H₁₂O₆ (glucose) as fuels. The ratio of oxidizers and fuels in the solution combustion method is maintained to unity [18]. The stoichiometry amount of all metal nitrates and fuels are weighed and added into the beaker one by one. All these weighed metal nitrates and fuels are diluted with distilled water and then mixed by using a magnetic stirrer for about 45 min at a speed of 1200 revolution per minute to obtain a homogeneous solution. This homogeneous solution was kept inside a preheated muffle furnace at 450 °C. This solution is first heated, boiled, frothed and subsequently ignited. This process will be completed within 20 min, obtaining powder nanoparticles. The obtained powder nanoparticles are then put into an agate mortar and pestle to obtain fine powder. Fig. 1 shows the flow chart of the solution combustion method for synthesis of Zn²⁺ substituted MnCr₂O₄ nanoparticles.

![Flow chart of the solution combustion method for synthesis of Zn²⁺ substituted MnCr₂O₄ nanoparticles.](image)

2.3. Characterizations

The synthesized sample was characterized by X-Ray Diffractometric technique (XRD) and the diffractogram was obtained at 2θ in the range from 10° to 80° under a step size of 0.02°, which is done by using Cu-Kα radiation of wavelength (λ) of 1.5404 Å. The XRD data was fitted by using full proof software to understand the crystalline nature and structure. The Neutron Powder Diffraction (NPD) measurement was carried out with finely grained powder of the Zn²⁺ substituted MnCr₂O₄ sample packed in a vanadium container at room temperature, which was done by using a focusing crystal-based powder diffractometer at a wavelength of 1.48 Å at room temperature, at the UGC-DAE Consortium for Scientific Research beam line (PD-3) at the Dhruva reactor in Trombay, India. The NPD diffractogram was obtained at 2θ in the range of 6–119° at the step size of 0.037°.

The elemental composition of the Zn²⁺ substituted MnCr₂O₄ was analyzed through X-ray photoelectron spectroscopy (XPS) analysis conducted in a Vacuum Generator (VG) ESCALABMKII spectrometer upgraded AlKα source fitted with a X4R twin anode. This source was operated at 1486.6 eV energy with 300 W power. Raman spectrum was obtained by using Laser confocal Raman spectrometer in the wave-number range from 100 to 800 cm⁻¹ to study the vibrational modes. The field dependent and temperature dependent susceptibility were performed using a 7 Tesla SQUID magnetometer from Quantum Design with a temperature range going down to 1.8 K and magnetic field measured up to ± 90 kOe.

2.4. Computational details

Quantum-mechanical calculations in the framework of the Density Functional Theory (DFT) were carried out using the B3LYP exchange correlation functional implemented in CRYSTAL17 code [19–21] in order to obtain theoretical insight into the structural, magnetic and electronic properties of Zn²⁺ substituted MnCr₂O₄ oxide. Thus, pure MnCr₂O₄ was modelled in a normal spinel configuration considering the primitive unit cell of cubic symmetry (Fd-3m) containing two MnCr₂O₄ units (14-atoms). Aiming to represent the crystalline structure of the 50 mol % Zn²⁺ substituted MnCr₂O₄, Mn₀.₅Zn₀.₅Cr₂O₄, a conventional cubic unit cell containing four MnCr₂O₄ units (56-atoms) was used, where half of the Mn²⁺ sites were substituted by Zn²⁺ cations, as depicted in Fig. 2. Both atomic positions and unit cell parameters were relaxed in both cases as a function of the system’s total energy. The convergence criteria for mono and bielectronic integrals were both
were set to 10^{-8} Hartree, while the RMS gradient, RMS displacement, maximum gradient and maximum displacement were set to 3×10^{-4}, 1.2×10^{-8}, 4.5×10^{-4} and 1.8×10^{-3} a.u., respectively. Regarding the density matrix diagonalization, the reciprocal space net was described by a dense mesh consisting of a shrinking factor set to $8 \times 8 \times 8$, corresponding to 29 k-points in accordance with the Monkhorst-Pack method [22]. The accuracy in evaluating the Coulomb and exchange series was controlled by five thresholds for which the adopted values are 10^{-8}, 10^{-8}, 10^{-8}, 10^{-8} and 10^{-16}. Zn, Mn, Cr were described by all-electron 86-411d41g basis set in all calculations, and the O atoms were described by 8-411g* [23–25].

The magnetic properties of pure and Zn$^{2+}$ substituted MnCr$_2$O$_4$ materials were investigated considering a set of four collinear models described as: (i) ferromagnetic model (FEM), where the spins for all neighbors are parallel ordered; (ii) ferrimagnetic-1 model (FIM-1), for which the spins of Cr-site are parallel to each other, but antiparallel ordered to Mn; (iii) ferrimagnetic-2 model (FIM-2), where each spin of Mn are antiparallel ordered to each other, while Cr-site spins are ferromagnetic; and (iv) ferrimagnetic-3 model (FIM-3), where each spin of Cr nearest neighbors are antiparallel ordered to each other, while Mn-site spins are ferromagnetic. The exchange coupling constant was computed from the energy difference between the magnetic configurations using the Ising model, which enables calculating the coupling constants J from the energy difference of the magnetic states, since the unpaired electrons are well-defined. The exchange coupling constants herein are described by the equations:

$$\Delta E_{\text{FIM1}} - \Delta E_{\text{FEM}} = 96 J_{\text{Cr-Mn}} S_{\text{Cr}} S_{\text{Mn}}$$

$$\Delta E_{\text{FIM2}} - \Delta E_{\text{FEM}} = 24 J_{\text{Cr-Mn}} S_{\text{Cr}} S_{\text{Mn}} + 24 J_{\text{Cr-Cr}} S_{\text{Cr}}^2$$

3. Results and discussion

3.1. Effect of synthesis process on the structure of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles

The Rietveld refined XRD patterns of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles synthesized via the solution combustion route are shown in Fig. 3. Peak positions in the XRD data confirm the single phase having spinel cubic structure with Fd-3m space group. The non-existence of additional peaks in the XRD patterns clearly confirms that there is no impurity peak. The observed XRD pattern peaks match with the JCPDS [33–892] [29]. The lattice parameter of the Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ was found to be 8.358 Å, which is less than the reported lattice parameter of MnCr$_2$O$_4$.
and L_B respectively, where a is the lattice parameter of CrO$_4^{2-}$ and $a = 16.9$, $R_{EXF} = 12.55$, and goodness of fit $r = 1.64$.

The obtained XPS spectra for Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles and each element (such as Mn$_2$P$_2$, Zn$_2$P$_2$, Cr$_2$P$_2$, and O$_1$) is presented in Fig. 5(a–e). In all XPS spectra, a red line indicates the raw XPS spectrum data and a green line indicates the fitted XPS spectrum data.

The core spectra of Mn$_2$P$_2$ is shown in Fig. 5(b). The core spectra of Zn$_2$P$_2$ reveal the Zn$_2$P$_{3/2}$ binding energy centered at 1021.35 eV and the Zn$_2$P$_{1/2}$ binding energy centered at 1044.4 eV, which are characteristic values of the oxidation state of Zn$^{2+}$ in Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles. These results indicate the presence of Zn$^{2+}$ in the surface morphologies of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$. The binding energy difference between Zn$_2$P$_{1/2}$ and Zn$_2$P$_{3/2}$ is 23.05 eV for Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles.

Fig. 5(d) shows the core spectrum of Cr$_2$P$_2$, which indicates the presence of two strong peaks related with Cr$_2$P$_{1/2}$ and Cr$_2$P$_{3/2}$ binding energies centered at 586.3 eV and 576.3 eV, respectively. The peak at 576.3 eV confirms that Cr$^{3+}$ ions are located at octahedral sites and exposed on the surface of the spinel samples, being considered as active sites. The peak at 586.3 eV indicates the presence of Cr$^{4+}$ ions in spinel samples as reported by Sloczynski et al. [34], being attributed to the presence of small percentages of Cr$^{4+}$ in the sample or surface oxidation.

The core spectrum of O$_1$ is shown in Fig. 5(e). The oxygen core spectra of the asymmetric peak at 530.35 eV was attributed to the lattice oxygen and one weak peak at 531.3 eV was attributed to superficial adsorbed oxygen (hydroxyl oxygen), which are characteristic of the oxidation of O$^{2-}$ in Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles. These adsorbed oxygen peaks can be attributed to a variety of species such as oxygen ions in a low coordination condition, surface chemisorbed oxygen, hydroxyl and an amount of oxygen containing surface contamination [35].

3.4. Raman analysis

The Raman spectra of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles in the range of 100–800 cm$^{-1}$ is depicted in Fig. 6. This spectrum clearly shows the existence of four bands at 172, 486, 547 and 661 cm$^{-1}$. According to group theory, Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ is a normal spinel spectra and has five phonon modes (A_{1g} + E_g + 3F_{2g}). The phonon modes can be observed at approximately 172 cm$^{-1}$ ($F_{2g}(3)$), 486 cm$^{-1}$ ($F_{2g}(2)$), 547 cm$^{-1}$ ($F_{2g}(1)$) and 661 cm$^{-1}$ (A_{1g}). The lower frequency phonon vibrations $F_{2g}(3)$ greatly depend on the octahedral site of Cr$^{3+}$ ions and was observed at 172 cm$^{-1}$. The higher frequency phonon vibrations $F_{2g}(2)$ greatly depend on the tetrahedral site of Mn$^{2+}$ and Cr$^{2+}$ ions, and was observed at 486 cm$^{-1}$. The peak at 547 cm$^{-1}$ was attributed to the stretching modes of Cr-O-Cr. In comparison with the Raman spectra of ZnCr$_2$O$_4$ by Wang et al. [36], the broad Raman band at 661 cm$^{-1}$ is attributed to the partial position disorder of the cations in the spinel structure, i.e. the so-called antisite defect [37].

3.5. Field dependent magnetization

Fig. 7 shows the field dependent magnetization (M–H) loop of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles at 3 K and 300 K (Room temperature). The maximum magnetic field applied was 8.4 T. The black line shows the M–H curve at 300 K, which clearly indicates the paramagnetic behavior of the sample; we cannot observe any hysteresis loss at 300 K in this loop, as the magnetization shows the linear nature with an applied magnetic field up to 8.4 T. However, the sample exhibits hysteresis loss in the M–H loop at 3 K. The M–H loop reveals an antiferromagnetic nature of the sample with remanent magnetization of (M_r) 0.377 emu/g and saturation magnetization (M_s) of 3.667 emu/g.
The coercivity field was estimated as 1578.35 Oe by using the mean of negative coercivity (-H_c) and positive coercivity (+H_c) along the M−H loop of the field axis. The reduced remanence (S) was calculated by using this equation: $S = M_r/M_s$, which was found to be 0.102. The uniaxial anisotropy (K_u) was calculated by using this equation: $K_u = H_{ex} M_s$ and uniaxial anisotropy was found to be 5875.94 erg/Oe. The cubic anisotropy (K_c) was calculated by using this equation: $K_c = H_{ex} M_s^3/3$ and cubic anisotropy was found to be 9043.45 erg/Oe, where H_c is the coercivity field, M_s is the saturation magnetization and M_r is the remanent magnetization.

3.6. Temperature dependent susceptibility

The temperature dependent susceptibility, (i.e., both ZFC and FC susceptibility of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles at 100 Oe) are presented in Fig. 8. Both the ZFC and FC curves linearly increase up to 19 K, which was attributed to the normal transition temperature. The value of normal transition temperature (T_N) is greater than that
reported for a ZnCr$_2$O$_4$ bulk polycrystalline sample [39]. Fig. 8 shows a transition from paramagnetic to antiferromagnetic phase. With further temperature cooling, the susceptibility returns to increase the FC curve and decrease the ZFC path up to 2 K, which may be attributed to contributions from uncompensated surface spins of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles.

We cannot observe a ferromagnetic nature in Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles due to non-magnetic Zn$^{2+}$ ions at the tetrahedral site. Zinc contains chromate spinels which act as a good model of geometrically-frustrated magnets and it highly spins frustrated magnets even in the form of small dimensioned nanoparticles. These facts were confirmed by the high value of Curie-Weiss temperature (θ_{cw}) relative to the normal transition temperature (T_N). The paramagnetic and antiferromagnetic nature can be clearly observed in our sample.

For antiferromagnetic chromites with a non-magnetic octahedral site (A-site) atom, the effective magnetic moment (μ_{eff}) and the Curie-Weiss temperature (θ_{cw}) can be determined by fitting the observed magnetization to the Curie-Weiss law equation: $\chi = \chi_p + \frac{C}{T-\theta_{\text{cw}}}$, where χ_p is the temperature independent paramagnetic term which appears in susceptibility [5]. The value of the effective magnetic moment and the Curie-Weiss temperature are obtained by fitting the inverse of susceptibility (χ^{-1}) versus temperature data above the normal transition temperature (Fig. 9). The Curie-Weiss temperature (θ_{cw}) and effective magnetic moment (μ_{eff}) were found to be -428.87 K and $10.88 \mu_B$/f. u.,

Fig. 6. Raman spectrum of Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles.

Fig. 7. Magnetic field dependent magnetization at 300 K, 3 K for Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles.

Fig. 8. Temperature dependent susceptibility under zero field cooling (ZFC) and field cooling (FC) at 100 Oe for Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles.

Fig. 9. Temperature dependent inverse susceptibility for Mn$_{0.5}$Zn$_{0.5}$Cr$_2$O$_4$ nanoparticles.
respectively. The obtained effective magnetic moment value matches well with the theoretical effective magnetic moment (Theoretical \(\mu_{\text{eff}} = 9.786 \mu_\text{B} / \text{f} \)). The frustration factor of Mn\(_{0.5}\)Zn\(_{0.5}\)Cr\(_2\)O\(_4\) nanoparticles is found to be \(|\theta_{\text{SP}}|/T_N = 22.57 \), and this value is greater than that for ZnCr\(_2\)O\(_4\) nanoparticles \(|\theta_{\text{SP}}|/T_N = 18 \) \([40]\).

3.7. DFT calculations

In this section we conduct a theoretical evaluation about the effect of Zn substituted on the structural, magnetic and electronic properties of the MnCr\(_2\)O\(_4\) material. First, the optimized lattice parameters for pure MnCr\(_2\)O\(_4\) at the B3LYP theory level \((a = b = c = 8.473 \text{ Å})\) showed reasonable agreement with the experimental results reported in Section 3.1. In this case, tetrahedral [Mn\(_2\)O\(_4\)] clusters containing four equal Mn—O bonds of 2.049 Å oxygen-bridged with octahedral regular [Cr\(_6\)O\(_4\)] clusters with six Cr—O bonds of 2.002 Å describe the crystalline structure of pure MnCr\(_2\)O\(_4\). A contraction of the unit cell was observed \((a = b = c = 8.417 \text{ Å})\) for the Zn substituted model, being in agreement with the Mn\(^{2+}\) and Zn\(^{2+}\) ionic radii experimental evidence. Thus, the Mn-O, Zn-O and Cr—O bond interactions were evaluated in order to establish the connection between the local disorders generated from the Zn substitution in the MnCr\(_2\)O\(_4\) matrix. The unit cell contraction is accompanied by a shrinkage of A—O bond paths which becomes 2.003 Å and 2.040 Å for Zn—O and Mn—O, respectively. In addition, structural disorder provoked by the Zn substitution was observed in the [Cr\(_6\)O\(_4\)] clusters which becomes distorted with four short Cr-O bonds of 1.987 Å and two long Cr-O bond paths of 2.006 Å. This fact can be attributed to the different ionic radii of divalent Zn and Mn cations, generating new distribution of the electron density for the substituted material.

Let us now briefly analyze the role of Zn substitution on the exchange coupling constant of MnCr\(_2\)O\(_4\) material. First, the exchange coupling constant for pure MnCr\(_2\)O\(_4\) was calculated using the Ising model as \(J_{\text{Ising-Mn}} = -18.81 \text{ K}, J_{\text{Ising-Cr}} = -13.83 \text{ K} \) and \(J_{\text{Ising-Cr}} = -30.08 \text{ K} \), showing excellent agreement with previous theoretical and experimental results \([41–44]\). In this case, all exchange coupling constants were calculated to be antiferromagnetic, with \(J_{\text{Zn-Cr}} \) being dominant along the investigated interactions. Thus, a ferromagnetic super-exchange mediated by oxygen p orbital is expected for this exchange coupling constant, following the guidelines by Goodenough-Kanamori-Anderson \([45]\) in a regular 90°Cr-Cr cluster. However, the observed antiferromagnetic exchange coupling indicates the dominant character involving d orbital overlapping that result in an antiparallel interaction. On the other hand, the calculated \(J_{\text{Cr-Cr}} \) and \(J_{\text{Zn-Cr}} \) interactions for the Zn substitution model were \(-14.80 \text{ K} \) and \(-30.63 \text{ K} \), respectively, indicating an overall intensification of the antiferromagnetic character mainly for the dominating Cr-Cr interactions. This fact can be addressed for the local structural disorder generated from the Zn substitution which shrinks the A—O bond interactions followed by a Jahn-Teller distortion along the [Cr\(_6\)O\(_4\)] clusters. In addition, the calculated results indicate that a non-collinear magnetic ground state is the most suitable representation of the long-range antiferromagnetic interaction involving d orbital overlapping that result in an antiparallel interaction. On the other hand, the calculated JCr-Cr and JMn-Cr interaction following the guidelines by Goodenough-Kanamori-Anderson \([45]\) is antiferromagnetic, with JCr-Cr being dominant along the investigated interactions. Thus, a ferromagnetic interaction involving d orbital overlapping that result in an antiparallel interaction.

Another point is that the experimental evidence of paramagnetic behavior at room temperature can be associated with the spin disorder along the exposed surfaces of pure and substituted MnCr\(_2\)O\(_4\) nanoparticles, as reported for other materials \([46–48]\). In this case, the role of uncompensated spins along the exposed planes were not considered in this work, being a subject for further future studies.

Next, the electronic structure of pure and Zn substituted MnCr\(_2\)O\(_4\) was investigated by means of the Band Structure and Density of States profiles, as presented in Fig. 10, considering the Neel ferromagnetic configuration (FIM-1) which corresponds to the most stable model in comparison to FEM. In this case, it was observed that the Valence Band (VB) for pure MnCr\(_2\)O\(_4\) (Fig. 10a) is composed of Cr and Mn (3d) orbitals hybridized with O (2p) states, while the Conduction Band (CB) is mainly composed of empty states of both Mn and Cr orbitals. Regarding the band-gap region, a direct electronic transition between \(\Gamma \)–\(\Gamma \) points was calculated around 5.14 eV for the spin-beta channel, while the spin-up shows higher energy excitation \((5.21 \text{ eV between } \text{X and X}) \), confirming the semiconductor behavior of MnCr\(_2\)O\(_4\). On the other hand, it was observed that the VB for the Zn substituted material (Fig. 10b) is mainly composed of Cr (3d) orbitals hybridized with O (2p) states, with a minor contribution of Mn and Zn states, as well as for the CB. In addition, the substitution of Mn by Zn induces a disturbance on the VB maximum and CB minimum, narrowing the band-gap to 4.93 eV for the spin-up channel between \(\Gamma \)–\(\Gamma \) points, whereas the band-gap for the beta-spin channel was calculated as 5.47 eV. Such band-gap disturbance can be addressed to the new distribution of the electron density associated with the structural disorders generated from the substitution mechanism, especially for [Cr\(_6\)O\(_4\)] clusters acting on the crystal field splitting of 3d energy levels for Cr, resulting in reduced excitation energy.

4. Conclusions

In this work, nanocrystalline Mn\(_{0.5}\)Zn\(_{0.5}\)Cr\(_2\)O\(_4\) nanoparticles were successfully synthesized via the solution combustion method for the first time and deeply investigated by combining theoretical and experimental techniques. The XRD pattern reveals pure phase of the synthesized sample with the average crystallite size estimated to be 8 nm. Raman spectra assign the vibration modes of the sample, which agrees with the spinel cubic structure and the cations occupying the respective sites in the sample. In addition, theoretical calculations...
suggest that the main role of Zn substituting on the structural properties of MnCr2O4 through a local structural distortion on the A–O (A = Mn, Zn) and Cr–O chemical bonds shrink the unit cell volume. The room temperature neutron diffraction study explored the origin for magnetic structure in the sample. Field dependent magnetic measurements at room temperature reveal the paramagnetic nature of the sample and low temperature, i.e. measurements at 3 K reveal the existence of hysteresis behavior, and the sample has antiferromagnetic behavior. The possible magnetic parameters were estimated from the M-H loop and DFT calculations for the first-neighbor exchange coupling constant. The susceptibility of ZFC and FC curves of the sample reveals the normal transition temperature is greater than that of the reported values of the ZnCr2O4 in bulk regime. The frustration factor was found to be greater than for ZnCr2O4 nanoparticles. Paramagnetic to antiferromagnetic phase transition was established in the present investigation of Mn0.5Zn0.5Cr2O4 nanoparticles, while the computed exchange coupling constant indicates the dominant antiferromagnetic character of Cr-Cr interaction. Additional electronic structure analysis indicated a narrowed band-gap for Mn0.5Zn0.5Cr2O4, enabling the reported nanoparticles as excellent candidates to achieve lower transition temperatures and superior electronic/ optical properties.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

K. Manjunatha would like to express sincere thanks to the University Management for providing a fellowship for pursuing the Ph.D. program. This work was supported by the Federal University of São Carlos, the Federal University of Rio Grande do Norte (PPGCEM-URF), the State University of Ponta Grossa, CAPES, CNPq, and the Fundação Araucária (Brazil). R. A. P. Ribeiro acknowledges financial support from CNPq 156176/2018-1. M. C. Oliveira acknowledges financial support from PNPD/CAPES (2019/88887.319041). E. Longo acknowledges financial support from FAPESP 2017/0296-2. Dr. Jagadeesh Angadi V would like to express sincere thanks to UGC-DAE CSR, Mumbai Centre, BARC Campus, Trombay, Mumbai 400085, India for providing Neutron diffraction and Magnetic measurement facility.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https:// doi.org/10.1016/j.jmmm.2020.166595.

References

[8] G. Riedel, J. Nørskov, J. Peralta, J. Jørgensen, J. Ólafsson, A. Kornyshev, A. Grin, L. Jørgensen, A. Mikkelsen, J. Pápai, A.K. Nørskov, J. Jørgensen, DFT+U calculations for the low temperature neutron diffraction study explored the origin for magnetic structure in the sample. Field dependent magnetic measurements at room temperature reveal the paramagnetic nature of the sample and low temperature, i.e. measurements at 3 K reveal the existence of hysteresis behavior, and the sample has antiferromagnetic behavior. The possible magnetic parameters were estimated from the M-H loop and DFT calculations for the first-neighbor exchange coupling constant. The susceptibility of ZFC and FC curves of the sample reveals the normal transition temperature is greater than that of the reported values of the ZnCr2O4 in bulk regime. The frustration factor was found to be greater than for ZnCr2O4 nanoparticles. Paramagnetic to antiferromagnetic phase transition was established in the present investigation of Mn0.5Zn0.5Cr2O4 nanoparticles, while the computed exchange coupling constant indicates the dominant antiferromagnetic character of Cr-Cr interaction. Additional electronic structure analysis indicated a narrowed band-gap for Mn0.5Zn0.5Cr2O4, enabling the reported nanoparticles as excellent candidates to achieve lower transition temperatures and superior electronic/ optical properties.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

K. Manjunatha would like to express sincere thanks to the University Management for providing a fellowship for pursuing the Ph.D. program. This work was supported by the Federal University of São Carlos, the Federal University of Rio Grande do Norte (PPGCEM-URF), the State University of Ponta Grossa, CAPES, CNPq, and the Fundação Araucária (Brazil). R. A. P. Ribeiro acknowledges financial support from CNPq 156176/2018-1. M. C. Oliveira acknowledges financial support from PNPD/CAPES (2019/88887.319041). E. Longo acknowledges financial support from FAPESP 2017/0296-2. Dr. Jagadeesh Angadi V would like to express sincere thanks to UGC-DAE CSR, Mumbai Centre, BARC Campus, Trombay, Mumbai 400085, India for providing Neutron diffraction and Magnetic measurement facility.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmmm.2020.166595.

References
