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A B S T R A C T

Crystal morphology with different surfaces is important for improving the antibacterial activity of materials. In
this experimental and theoretical study, the antibacterial activity of β-Ag2MoO4 microcrystals against the Gram-
positive bacteria, namely, methicillin-resistant Staphylococcus aureus (MRSA), and the Gram-negative bacteria,
namely, Escherichia coli (E. coli), was investigated. In this study, β-Ag2MoO4 crystals with different morphologies
were synthetized by a simple co-precipitation method using three different solvents. The antimicrobial efficacy
of the obtained microcrystals against both bacteria increased according to the solvent used in the following
order: water < ammonia < ethanol.

Supported by experimental evidence, a correlation between morphology, surface energy, and antibacterial
performance was established. By using the theoretical Wulff construction, which was obtained by means of
density functional calculations, the morphologies with large exposition of the (001) surface exhibited superior
antibacterial activity. This study provides a low cost route for synthesizing β-Ag2MoO4 crystals and a guideline
for enhancing the biological effect of biocides on pathogenic bacteria by the morphological modulation.

1. Introduction

Metal molybdates such as AxMoOz (where A is a monovalent, di-
valent, or trivalent metal ion) have recently been investigated in-
tensively [1–14] owing to their chemical stability and unique crystal
structure (layers of molybdenum oxide octahedra separated by the
metal ions) [15], which make them suitable for a wide range of ap-
plications. Particularly, silver molybdates have been investigated in the
fields of lubrication [16,17], humidity and gas sensors [18,19], pho-
toelectronic devices [6], surface enhanced Raman scattering techniques
[20,21], photocatalysis [3,4,15,22–30], and photoluminescence
[22,31,32]. Several synthesis methods have been reported, such as
hydrothermal [21,33–36], solution-based chemical reaction [20], co-
precipitation [4,25,26,32,37,38], dynamic template route [23], laser
annealing [39], and microwave-assisted hydrothermal methods
[22,24,40,41]. In this context, Ng and Fan [42] have recently reported
the preparation of β-Ag2MoO4 crystals with high-index facets via the
delicate tuning of the supersaturation conditions during crystal growth.

Additionally, they were able to find a relationship between morphology
and photocatalytic activity.

The morphological modulations can be achieved by the different
solvents (water, ammonia, and ethanol) used in the co-precipitation
synthesis method, as we described previously [37].

As a continuation of our work in this field of research, in this paper,
we report the antibacterial activity of β-Ag2MoO4 microcrystals against
gram-positive bacteria, namely, methicillin-resistant Staphylococcus
aureus (MRSA), and gram-negative bacteria, namely, Escherichia coli (E.
coli). These bacteria are important because they are opportunistic pa-
thogens that are often inherently resistant to antibiotics or capable of
rapidly building resistance to many common antimicrobial agents [43].
More significantly, the biological effects of β-Ag2MoO4 with different
morphologies on the bacteria are systematically discussed. Ad-
ditionally, to gain a deeper understanding of the atomic and electronic
structure, and to establish a correlation among the morphology, surface
energy, optical properties, and antibacterial activities, we conducted
first principle calculations on the basis of density functional theory
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(DFT) to complement our experimental findings. This study intends to
provide a more comprehensive insight into the development of novel
biocide with a unique morphology and future potential for use in bio-
logical applications.

2. Results and discussion

The β-Ag2MoO4 microcrystals were synthesized by using different
solvents (water, ammonia, and ethanol) and the co-precipitation
method. The experimental method is described in the Supplementary
Material (SM) section. The samples were structurally characterized by
x-ray (XRD) diffraction to evaluate the order/disorder at long range.
Fig. 1 shows the XRD for the samples of silver molybdate. It was ob-
served that all compounds presented a structure type assigned to a
cubic spinel with the Fd3m space group, which is in agreement with the
Inorganic Crystal Structure Database (ICSD) card 238,013 [22]. The lat-
tice parameters for the β-Ag2MoO4 phase are a = b = c = 9.3170 Å
and a = b = c 90°. Moreover, Fig. 1 shows clearly that there was no
other additional peak; that is, there was no undesirable secondary
phase. Fig. 1 shows the cubic spinel structure type that was composed
by distorted octahedral clusters [AgO6] with Oh symmetry for the Ag
sites, and distorted tetrahedral clusters [MoO4] with Td symmetry for
the Mo sites. The crystallinity degree of a structure (order/disorder),
that is, the organization at long range is directly dependent of the
manner of the ions organize themselves into the structure, being that it
is totally dependent on the chemical environment in which the material
is formed. Therefore, the change of solvent, or the addition of any
species in the synthesis of the material may corroborate a change in the
order/disorder. A factor related to structural order/disorder effects at
long-range can be found by the analysis of the full width at half max-
imum (FWHM) of the most intense peak of the XRD patterns, related to
the plane (311) of the β-Ag2MoO4. The samples obtained in water,
ethanol and ammonia, have FMHW values of 0.18, 0.21 and 0.23° re-
spectively, showing that the samples synthesized with ethanol and
ammonia have a lower degree of order than the samples obtained in
water.

Raman spectroscopy is a technique complementary to XRD for es-
timating structural order/disorder at short-range. Fig. 2 shows the ex-
perimental spectra obtained for all samples. The β-Ag2MoO4 belongs to
the point-group symmetry Oh

7 with the centrosymmetric inversion,
which indicates five active Raman modes (A1g, Eg, and T2g) obtained
from the decomposition of point Γ (Γ = A1g + Eg + 3T2g + T1g) [22].

Fig. 2a shows the spectra for the samples obtained in different solvents.
The spectra of all samples show four characteristic peaks centered at
276, 355, 761, and 873 cm−1. The first Raman mode at 276 cm−1 is
associated with a transition Eg, which refers to external structure vi-
brations on the [AgO6] clusters [22]. The Raman mode at 355 cm−1

was associated with the transition T2g caused by the OeMoeO asym-
metric bending vibrations [22,44]. Both the 761 and 873 cm−1 modes
are associated with the T2g and A1g transitions, respectively, and were
caused by the asymmetric and symmetric OeMoeO vibrations [22,44].
Fig. 2b shows shows FT-IR for the samples of β-Ag2MoO4. In the FT-IR
spectra of the samples the band at 827 cm−1 is observed related to an
asymmetrical stretching of the OeMoeO bonds of the [MoO4] tetra-
hedral clusters [3,45]. Other vibrations are not observed because they
appear below 400 cm−1, outside the limit of the equipment used.

Theoretical investigations based on first principle calculations by
ab-initio and quantum-chemical simulations have been increasingly
used to complement the experimental findings, provide valuable in-
formation of the electronic, structural, and energetic properties, and
simulate and predict the morphology of the materials [22,44,46]. Thus,
by using this combined experimental and theoretical approach, pre-
vious studies determined that the most stable morphology for the β-
Ag2MoO4 can occur when the surface energies are 1.90,1.28, and
3.46 J/m2 for the (001), (011), and (111) faces, respectively [37,44].

Considering that Ag2MoO4 acquires different morphologies ac-
cording to the synthetic method employed [37,40], in this study, the
morphologies of the β-Ag2MoO4 samples were investigated by field
emission scanning electron microscopy (FE-SEM), and are of funda-
mental importance to understanding the morphological evolution pro-
cess and changes in the surfaces of the crystals with the variations of the
used solvents. The β-Ag2MoO4 samples that were obtained by using
different solvents are shown in Fig. 3. The predominant morphologies
obtained experimentally display the exposed (001), (011), and (111)
surfaces, which support the hypothesis that these surfaces are stabilized
by interacting with the solvent molecules. This observation suggests
that the Wulff shape of β-Ag2MoO4 is closely related to the chemical
environment. FE-SEM additional images are showed in the SM (Fig. S1).

For the following discussion on the relationship between the mor-
phology-antibacterial activity of the β-Ag2MoO4 samples to be valid, it
is assumed that the structure and facet composition of the crystals are
preserved in the time scale of the experiments. The Wulff crystal re-
presentation of the optimized β-Ag2MoO4, and the available morphol-
ogies that would be obtained by assuming different values for the
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Fig. 1. XRD patterns of the β-Ag2MoO4 microcrystals synthesized in water, ethanol and ammonia.
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surface energies of the three facets are displayed in Fig. 4. By analyzing
Fig. 4, it can be seen that the experimental and theoretical morpholo-
gies are in good agreement: (a) when water was used as the solvent, the
surface energy of the (111) surface decreased from 3.46 to 1.28 J/m2;
(b) when ammonia was used as the solvent; the surface energy of the
(111) surface decreased from 3.46 to 1.28 J/m2, and the surface energy
of the (001) surface decreased from 1.90 to 1.5 J/m2; (c) when ethanol
was used as the solvent, the surface energy values of both the (111) and
(001) surfaces decreased to 1.28 J/m2.

The minimum inhibitory concentrations (MICs), which are defined

as the lowest concentrations required for complete growth inhibition
(no visible growth by visual inspection), and the minimum bacterial
concentrations (MBCs), which are defined as the lowest concentrations
that do not result in bacterial growth on plates, were determined for the
β-Ag2MoO4 microcrystals that were synthesized in different solvents
(water, ammonia, and ethanol). The tests were performed according to
the standard methods described in Clinical Laboratory Standards
Institute (CLSI) [47]. The microorganisms evaluated in this study were
MRSA (ATCC 33591) and E. coli (ATCC 8739). In the microbiological
test results shown in Fig. 5, the MIC value was the same as the MBC
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Fig. 2. Raman (2a) and FT-IR (2b) spectra of the β-Ag2MoO4 microcrystals synthesized in water, ethanol and ammonia.
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value for MRSA for the three solvents used in the synthesis of the β-
Ag2MoO4. Similar findings were observed for E. coli.

When the microcrystals were synthesized with ethanol, the MIC/
MBC value (31.25 μg/mL) for MRSA was lower than that observed for
the microcrystals synthesized with ammonia (62.50 μg/mL).
Additionally, the bactericidal activity of both β-Ag2MoO4 microcrystals
was higher than that exhibited by the samples synthesized in water,
which required higher concentration (250 μg/mL) to inhibit the MRSA
growth. Fig. 5a shows that, in comparison with the control (8.8 ± 0.71
log10 CFU/mL), at half of the MICs/MBCs values, the MRSA growth was
reduced by approximately 4 logs for the β-Ag2MoO4 microcrystals
synthesized by using ethanol (to 4.3 ± 0.07 log10 CFU/mL), 5 logs for
the microcrystals synthesized in ammonia (to 3.9 ± 0.06 log10 CFU/
mL), and 4 logs when water was used as the solvent (to 4.3 ± 0.07
log10 CFU/mL).

For E. coli, the microcrystals synthesized using ethanol exhibited a
lower MIC/MBC value (0.49 μg/mL) than that observed for the mi-
crocrystals synthesized in ammonia (1.95 μg/mL) and water (3.91 μg/
mL). The incubation of the bacteria in the presence of half of the mi-
crocrystal MICs produced a reduction of growth of approximately 5 logs
for the β-Ag2MoO4 microcrystals, in comparison with the control
(7.3 ± 0.20 log10 CFU/mL) and regardless of the solvent used in the
synthesis (Fig. 5b).

Oliveira et al. found different morphologies of Ag2MoO4 according
to the synthesis used. When ethanol was employed, there was im-
provement in its antibacterial activity against the same E. coli strain
[40]. In this study, in addition to observing better anti-E. coli activity
for the sample synthesized in ethanol, we also tested, for the first time,
the efficiency against MRSA, which is a highly pathogenic bacterium.

It is worth noting that, for the three β-Ag2MoO4 microcrystals ob-
tained in water, ammonia, and ethanol, the concentrations required to
kill E. coli were always significantly lower than those required to kill
MRSA. These findings can be attributed, at least in part, to the different

cell wall structures. The Gram positive bacteria, namely, MRSA are
composed of a cytoplasmic membrane and a thick, overlying pepti-
doglycan network (10–40 nm) composed of repeating units of a dis-
accharide-multipeptide building block that are polymerized and cross-
linked to create a continuous network that envelops the cell [48]. This
peptidoglycan network has several layers and contains mainly carboxyl,
amide and hydroxyl functional groups [49], and teichoic acids (TAs).
Two distinct types of TAs have been identified: wall teichoic acids
(WTAs) that are linked to and embedded into the peptidoglycan, and
lipoteichoic acids (LTAs) extending into and anchored to the cell
membrane (cytoplasmatic membrane) [50]. On the contrary, TAs were
not found in gram-negative bacterial cells, such as E. coli [49,50]. Ad-
ditionally, although gram-negative bacteria contain an outer mem-
brane, they only have a single peptidoglycan layer that is thin (3–6 nm)
and located in the periplasmatic space between the outer membrane
and the inner (cytoplasmatic) membrane [48]. Given that the cell wall
is crucial to the mechanical and chemical integrity of the cells, because
it protects them from the external environment and stress, all the
mentioned differences between the gram-positive and gram-negative
bacteria may have contributed to the higher activity of the synthesized
β-Ag2MoO4 microcrystals against E. coli, in comparison to MRSA.

From Fig. 6a, b, and c, we can see that the (111) surfaces of β-
Ag2MoO4 were Mo, O, and Ag ion-terminated, while the (001) and
(011) surfaces were O– and Ag ion-terminated. In the (111) surface, the
Ag cations were coordinated to three oxygen anions to form [AgO3.
3VO

x] complex clusters, and the Mo cations were coordinated to only
one oxygen anion (disfavoring its stability). The (011) surfaces ex-
hibited the Ag cations surrounded by four oxygen anions, which re-
sulted in the [AgO4. 2VO

x] complex clusters, while in the (001) surfaces,
the silver cations were coordinated to five oxygen anions and formed
[AgO5. VO

x] complex clusters (more stable for the electron/hole re-
combination processes). In addition to the atomic configuration of the
exposed facets, the solvent used in the synthesis had a great effect on

Surface    Esurf (J/m2)
(0 1 1)     1.28
(1 1 1)     3.46 ->1.28

Surface    Esurf (J/m2)
(0 1 1)     1.28
(0 0 1)     1.90 -> 1.28
(1 1 1)     3.46 -> 1.28

Surface    Esurf (J/m2)
(0 1 1)     1.28
(0 0 1)     1.90 -> 1.50
(1 1 1)     3.46 -> 1.28

β-Ag2MoO4 obtained in:

Water

Ethanol

Ammonia

1 μm

1 μm

1 μm

a

b

c

Fig. 3. FE-SEM images, morphologies, and facets of the β-Ag2MoO4 samples obtained by using different solvents: (a) water, (b) ethanol, and (c) ammonia.
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the reactivity and stabilization of the surfaces.
A semi conductor's antibacterial activity mechanism is mainly at-

tributed to the oxidative stress caused by the OH*, O2′, and O2H* (re-
active species) in contact with the bacterial cell wall [51,52], when
[AgO3. 3VO

x], [AgO4. 2VO
x], [AgO5. VO

x], [AgO6]x,and [MoO4]ox

complex clusters, from which the β-Ag2MoO4 semiconductor is formed,
are excited (Eqs. (1)-(7)).

+ → ′ +[MoO ] [MoO ] [MoO ] [MoO ] .o
x

d
x

o d4 4 4 4
• (1)

+ → ′ +V V[AgO ] [AgO ] [AgO ] [AgO ].x
6 5 O

x
6 5 O

• (2)

+ → ′ +V V[AgO ] [AgO ] [AgO ] [AgO ].x
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Fig. 4. Map of available β-Ag2MoO4 morphologies based on Wulff crystal construction as function of surface energy values.

a b

Fig. 5. Summary of log10 CFU/mL MRSA values (a) and E. coli (b) obtained for sub-inhibitory concentrations of the β-Ag2MoO4synthesized in water, ammonia, and
ethanol. Control MRSA = 8.8 (± 0.71) log10 CFU/mL; control E. coli = 7.3 (±0.20) log10 CFU/mL.

C.C. De Foggi, et al. Materials Science & Engineering C 111 (2020) 110765

5



hole for water, which decomposes into a hydroxyl radical and a proton
(OH* and H•). Simultaneously, [AgO4VO

xVO
•], [AgO3VO

•VO
•VO

••],
[AgO3VO

xVO
•VO

•], [AgO4VO
xVO

••],[MoO4]o′, and [AgO6]′transfer an
electron to the oxygen molecule (O2), which produces O2′ that interacts
with the proton and forms the O2H* radical. Fig. 6a, b, and c illustrate
the formation of these radicals.

According to the Wulff crystal representation of the optimized β-
Ag2MoO4 (Fig. 4), and the FE-SEM images presented in Fig. 3, when β-
Ag2MoO4 is synthetized using water, ammonia, and ethanol as the
solvents, the morphologies 1, 2, and 3, respectively, are preferably
obtained. This change of morphology is accompanied by the appear-
ance of the (001) surface. When water is used as the solvent, this face is
not present. However, when ammonia is used as a solvent, the (001)
surface appears in the morphology. Finally, for the microcrystals syn-
thesized in ethanol, this surface becomes more apparent. The results of

the microbiological tests (MIC/MBC values and Fig. 5) revealed that the
antibacterial efficiency of theβ-Ag2MoO4 microcrystals varied with the
solvent used in the synthesis, and increased in the following order:
water< ammonia< ethanol. Because the appearance of the (001)
surface increased the antibacterial efficiency, we propose that the ob-
served mechanism of β-Ag2MoO4for the inactivation of the MRSA and
E. coli was mainly caused by the presence of the [AgO5. VO

x] complex
clusters.

In the [AgO4VO
xVO

•] and [AgO3VO
xVO

xVO
•]/[AgO3VO

xVO
•VO

•]clus-
ters, internal electron-hole recombination can occur, while in the
[AgO5VO

•] complex clusters, the vacancy is separated from the electron
because the electron is located in an [AgO6]’organized complex cluster.
This justifies the fact that the [AgO5VO

•] complex clusters are more
reactive and thus more effective for antibacterial applications.

Moreover, according to the Wulff crystal representation of opti-
mized β-Ag2MoO4, which is shown in Fig. 4, these faces have low
surface energy (Esuf = 1.28 J/m2), as determined by the ab initio cal-
culations. Therefore, they are more easily polarized, and able to gen-
erate OH*, O2′, and O2H*, which are responsible for cell death.

3. Conclusion

We established a facile approach for the synthesis of β-Ag2MoO4

microcrystals with different morphology by means of the co-precipita-
tion method and by using three different solvents (water, ammonia, and
ethanol). All products exhibited powerful bactericidal capability
against gram-positive bacteria, namely, MRSA, and gram-negative
bacteria, namely, E. coli. The biocidal power increased in the following
order: water < ammonia < ethanol. The relationship between the
morphology of the differentβ-Ag2MoO4 microcrystals synthesized with
different solvents, and their biological effect, was constructed system-
atically by combining experimental techniques and first-principle cal-
culations. The morphologies were calculated by the Wulff crystal con-
structions based on first principle calculations using three surfaces:
(001), (111), and (011). It was concluded that, morphologically, the
larger presence of the (001) surface enhanced the antibacterial activity
against the MRSA and E. coli bacteria. We are firmly convinced that the
present study opens up the possibility for extensive investigation, not
only for antimicrobial activity, but also for other applications such as
the photocatalytic activity of β-Ag2MoO4, which can be controlled by
tuning their morphology. Additionally, we expect that the results and
concepts presented in this work can be extrapolated to the morphology-
controlled synthesis of other materials.
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