

Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Enhanced photocatalytic activity of CaMoO₄/g-C₃N₄ composites obtained via sonochemistry synthesis

Anderson A.G. Santiago^{a,*}, Elida M. Macedo^a, Fernanda K.F. Oliveira^a, Ricardo L. Tranquilin^b, Marcio D. Teodoro^c, Elson Longo^b, Fabiana V. Motta^a, Mauricio R.D. Bomio^a

^a LSQM – Laboratory of Chemical Synthesis of Materials – Department of Materials Engineering, Federal University of Rio Grande do Norte – UFRN, P.O. Box 1524, Natal, RN, Brazil

^b LIEC, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil

^c Department of Physics, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil

ARTICLE INFO

Keywords: CaMoO₄ g-C₃N₄ sonochemistry composite photocatalysis

ABSTRACT

Herein, CaMoO₄-based g-C₃N₄ composites are successfully synthesized by the sonochemistry method. All samples present photocatalytic activity under UV-light irradiation by employing methylene blue (MB). The structural analysis is available through X-ray diffraction (XRD), Raman, and FTIR spectroscopies, which verified a scheelite-type tetragonal structure for CaMoO₄ with slight distortion in [MoO₄] clusters between samples and confirmation of g-C₃N₄ presence in the powder. FEG-SEM images reveal a higher formation of interfaces between CaMoO₄ and g-C₃N₄ particles. Photoluminescence spectra are measured to study the photogenerated charge recombination process. Furthermore, the studies show that increased dosage of g-C₃N₄ onto the composite provides up to 95.1% of MB discoloration in 180 min, while CaMoO₄ without g-C₃N₄ only provides 40.2%.

1. Introduction

Composites on a nanometric scale (nanocomposite materials) have shown multiple advances with the enhancement or creation of new properties, which in turn provide an opportunity to develop new applications which were not individually possible for the materials that compose the nanocomposite. Thus, nanocomposite materials can be designed for unique properties, such as improved magnetic, microwave, optical, electrical, and inverse photoconductance performance [1–3].

Studies with materials using graphitic carbon nitride $(g-C_3N_4)$ have attracted much attention for research in the field of composites over the last decade [4–6]. The broad availability of $g-C_3N_4$ in the earth composed only of carbon and nitrogen and can be prepared by a cheap simple method of heating urea at 500°C [7]. Also, it is a polymeric metal-free semiconductor, has a favorable gap band of ~2.7 eV, high physicochemical stability, interesting electronic structure, and unique optical properties [8,9]. However, bulk $g-C_3N_4$ shows some disadvantages such as a fast recombination rate of photogenerated electron-hole pairs, small specific surface area, and poor absorption of visible light. Therefore, introducing some functional groups modified with appropriate semiconductors, and coupling with the narrow bandgap semiconductors are some methods to try solving these mentioned problems and increase photocatalytic efficiency [10–12].

Thus, one of the focuses of photocatalysis is wastewater treatment from organic pollutants produced by the textile industries, such as synthetic dyes because they present complex structures and complicated discoloration, resulting in problems to human health and the environment [13]. Photocatalysis is among the most promising of the various alternatives to remove water pollutants, as it constitutes an efficient method and has been gaining considerable prominence in the literature [14,15]. New studies are currently being carried out with materials already consolidated in the literature to reduce the harmful effects on society, such as tungstates and molybdates together with g-C₃N₄, in order to synthesize a composite material showing different or improvement in its properties [16–18]. For example, the ZnWO₄/g-C₃N₄ nanocomposite had 98% tetracycline decomposition in 70 min, while $ZnWO_4$ had 21% in the same conditions [19]. In addition, the Bi₂MoO₆/g-C₃N₄ heterojunction presented a 9.2-fold higher capability for ammonia generation than Bi_2MoO_6 in the same conditions [20]. Tetracycline decomposition and capacity for ammonia generation have improved by photogenerated charge carrier partition and heterostructure stabilization [19,20].

* Corresponding author. *E-mail address:* andersonsantiago@ufrn.edu.br (A.A.G. Santiago).

https://doi.org/10.1016/j.materresbull.2021.111621

Received 27 July 2021; Received in revised form 4 October 2021; Accepted 26 October 2021 Available online 30 October 2021 0025-5408/© 2021 Elsevier Ltd. All rights reserved.

Among these materials, calcium molybdate (CaMoO₄) may be cited due to being a semiconductor which belongs to the scheelite family, has a tetragonal structure, and a space group I41/a at room temperature [21]. Likewise, its matrices have two clusters, a [CaO₈] deltahedron and a [MoO₄] tetrahedron, with great polarization and stability properties associated with easy distortion of its structure (i.e. decreased symmetries) [22,23]. This material has potential for many industrial applications, such as light-emitting diodes (LEDs) [24,25], sensor and detector [26], and photocatalysis [9]. Furthermore, it has been synthesized by different synthesis methods such as precipitation [27,28], microwave hydro-/solvothermal procedures [9,29], polymeric precursor method [30], spray pyrolysis [22], and sonochemistry [21]. In contrast, the sonochemistry method stands out because it presents uniform particle size, a rapid reaction rate, and high purity at the end of the process [31]. Moreover, the bubble formed during the sonochemistry process can release stored energy through collapse, resulting in a heating and cooling rate of >1010 K/s, a temperature of $\sim\!5000$ K, and a pressure of \sim 1000 bar [32]. Thus, the sonochemistry method may be a promising synthesis route for nanocomposite material design, in particular CaMoO₄ with g-C₃N₄, in which the CaMoO₄ particles will grow on the g-C₃N₄ particles during the synthesis resulting in a strong interaction between particles to improve photogenerated charge carriers and heterostructure stabilization.

In the present work, CaMoO₄-based xg-C₃N₄ (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) composites were successfully synthesized by the sonochemistry method. X-ray diffraction (XRD), Fourier Transform Infrared Spectrophotometer (FTIR), Raman Spectra, FEG-SEM, Photoluminescence, and Ultraviolet-Visible (UV-vis) techniques were utilized to perform structural, morphological and spectroscopy characterizations of the samples. All CaMoO₄ based g-C₃N₄ composites performed photocatalysis activity under UV-light irradiation by employing methylene blue (MB). Our finding demonstrates that the CaMoO₄/0.5g-C₃N₄ sample is a promising candidate for photocatalysis application with a remarkable value of 95.1% MB discoloration in 180 min.

2. Experiment details

2.1. The synthesis procedure of $CaMoO_4/g-C_3N_4$ composite

Calcium nitrate tetrahydrate [Ca(NO₃)₂ • 4 H₂O] (Synth, 99% purity), sodium molybdenum oxide dihydrate [MoNa₂O₄ • 2 H₂O] (Alfa Aesar, 99.5%), urea [CH₄N₂O] (Synth, 99.0%), nitric acid [HNO₃] (Synth, 65.0%), and distilled water were used as reagents to prepare the $CaMoO_4/g-C_3N_4$ composite. First, graphitic carbon nitride (g-C_3N_4) was prepared by thermal decomposition of 10 g of urea at 550°C in a muffle furnace for 3 hours at a heating rate of 5°C/min [33]. The CaMoO₄/g-C₃N₄ precursor solution was then prepared by adding 0.5 mmol of Ca(NO₃)₂ and x mmol of g-C₃N₄ in 25 ml of H₂O (forming solution A), and 0.5 mmol of Na₂MoO₄ in 25 ml of H₂O (forming solution B). The values of x were 0, 0.1, 0.2, 0.3, 0.4, and 0.5, where each sample was defined as CMO, CMO1g, CMO2g, CMO3g, CMO4g, and CMO5g, respectively. Solution A was kept in an ultrasonic bath (model 1510 Branson 42 kHz) for 5 min, and solution B was kept under magnetic stirring for 5 min, both at 25°C. Next, solution B was added dropwise in solution A and then HNO3 was added into this solution to adjust the pH to 7. The solution bottle was then taken to an ultrasonic tip (model Branson 102C, 400W), where it remained for 30 min. After the sonochemistry method, the precipitate formed was washed with water four times and ethanol one time, centrifuged, and dried at 100°C for 12 h.

2.2. Characterization of CaMoO₄/g-C₃N₄ composite

Powder XRD patterns of CaMoO₄/g-C₃N₄ were collected between the 10° to the 120° angular range with a step speed of 1° min-1 and a step of 0.02° using an XRD 7000 Shimadzu diffractometer and monochromatic Cu K α radiation. The Rietveld refinement analysis [34] was performed

using the General Structure Analysis System (GSAS) with graphic interface EXPGUI [35]. Fourier Transform Infrared Spectrophotometer (FTIR) was used in the range from 400 to 4000 cm⁻¹ with a resolution of 8 cm⁻¹ (Shimadzu IRTracer-100). The Raman scattering spectra were recorded at room temperature in the frequency range from 100 to 1000 cm⁻¹ with a resolution of 2 cm⁻¹ and 64 scans using a LabRam HR Evolution HORIBA Scientific with a Nd:YAG laser (633 nm) and the maximum output power was maintained at 100 mW. Field-emission gun scanning electron microscopy and EDS spectroscopy (FESEM; Carl Zeiss, Supra 35-VP Model, Germany, operated at 6 kV or 15 kV) were used to investigate the morphologies and dispersion of atoms of samples. A Shimadzu spectrophotometer (UV-2600 model) was used to determine the UV-visible reflectance spectra of the powders.

Room temperature photoluminescence measurements were carried out using a 355 nm laser (Cobolt/Zouk) as an excitation source focused on a 10 μ m spot, with the luminescence dispersed by a 19.3 cm spectrometer with the signal detected by a Si-CCD detector (Andor Kymera/Idus).

The photocatalytic properties of the samples were evaluated for the discoloration of Methylene Blue (MB) dye with a molecular formula [$C_{16}H_{18}ClN_3S$] (99.5% purity, Mallinckrodt) in an aqueous solution under UV-light illumination. The sample was added in a cylindrical quartz reactor, having 50 ml of MB dye solution (concentration 1×10^{-5} mol L⁻¹). Then, a cylindrical quartz reactor was placed into a photoreactor at a controlled temperature (25°C) and illuminated by six UVC lamps (TUV Philips, 15 W, with a maximum intensity of 254 nm = 4.9 eV). A 3 mL aliquot of the dye solution was taken in 30-minute intervals and analyzed for its variations in the maximum absorption band of MB dye solutions by UV–visible absorbance spectra measurements using a Shimadzu spectrophotometer (UV-2600 model).

The mechanism acting on the photocatalytic process was determined using the charge, electron (e⁻) and hole (h⁺), and hydroxyl radical (•OH) scavengers. Isopropyl alcohol [C₃H₈O] (1 mL alcohol to 100 mL dye), ethylenediaminetetraacetic acid (EDTA) (7.2 mg EDTA/100 mL dye) and, silver nitrate [AgNO₃] (8.5 mg AgNO₃ to 100 mL dye) were used to suppress the action of hydroxyl radicals (•OH), positive charges (h⁺) and negative charges (e⁻), respectively.

3. Results and discussion

3.1. X-ray diffraction (XRD)

The XRD patterns of CaMoO₄/g-C₃N₄ composites samples are shown in Fig. 1. CaMoO₄/g-C₃N₄ composites were indexed in a unit cell with a tetragonal scheelite-type structure with space group *I*41/*a* (number 88) in accordance with JCPDS 29-0351 and the literature [36–38]. The XRD pattern of the g-C₃N₄ sample used in this work is exhibited in Fig. S1. The sample patterns showed great intensity, meaning they are materials with a long-range crystalline structure. In addition, g-C₃N₄ diffractions were not observed in the composite. Bhosale *et al* [39] synthesized g-C₃N₄/FeWO₄ composite and noted that the diffraction referent to the (002) plan of g-C₃N₄ only appeared with clarity when 50/50%wt of each element was prepared. In our work, the mass ratio of CaMoO₄/g-C₃N₄ composites had a maximum ratio of 81/19%wt (1:1 in mol, from the precursor reagents), respectively. Thus, the composites only showed the tetragonal phase in the XRD because of the low concentration of g-C₃N₄ regarding CaMoO₄.

Fig. S2 and Table 1 show the Rietveld refinement results of XRD patterns. All CaMoO₄/g-C₃N₄ XRD patterns were indexed as tetragonal cells (I41/a) according to ICSD 60552 (CaMoO₄). The Obs-Calc lines and reliability parameters χ^2 , Rp, Rf² indicate that the diffraction patterns of the samples are admirably adapted, showing superior quality in the structural refinements and numerical results. The calculated lattice values are according to values found in the literature. Oliveira *et al.* [40] synthesized CaMoO₄ by microwave-assisted hydrothermal method, and found lattice values of a = 5.225 Å, c = 11.437 Å, and cell volume of

Fig. 1. XRD patterns of $CaMoO_4/g-C_3N_4$, (a) CMO, (b) CMO1g, (c) CMO2g, (d) CMO3g, (e) CMO4g, and (f) CMO5g.

312.25 Å³. The *x*, *y*, and *z* positions occupied by the Ca and Mo atoms in the unit cell of the CaMoO₄ present special positions and are unchanged during structural refinement, where Ca1 cation positions were settled in x = 0.000, y = 0.250, and z = 0.625, and the Mo1 cations were defined at x = 0.000, y = 0.250 and z = 0.125. However, the O1 anions occupy general positions, and x, y, and z positions have been modified, as observable in Table 1. The increase of g-C₃N₄ in the composite caused slight alterations in the lattice, such as decreases of unit cell volume and increases in the *c/a* ratio of the CaMoO₄, while crystallite growth occurred non-linearly.

Fig. 2 shows unit cells of CaMoO₄/g-C₃N₄ composites modeled using the VESTA program [41]. The CaMoO₄ has a tetragonal scheelite-type structure formed by [CaO₈] and [MoO₄] clusters [22], which are highly influenced by the synthesis method conditions. The CaMoO₄/g-C₃N₄ composites had slight distortions such as a response to the modification of the synthesis reaction medium with variations of g-C₃N₄ in the composite.

3.2. Fourier Transform Infrared (FTIR) and Raman spectroscopies

The formation of the CaMoO₄/g-C₃N₄ composite was confirmed by FTIR and Raman spectroscopies, as can be seen in Fig. 3. In FTIR (Fig. 3-I), the absorption peaks at 765 and 445 cm⁻¹ were attributable to the

Table 1

The structural parameters obtained by Rietveld refinement for the CaMoO₄/g-C₃N₄ composites.

Sample	СМО	CMO1g	CMO2g	CMO3g	CMO4g	CMO5g
Lattice Parameter						
a (Å)	5.228	5.229	5.227	5.226	5.226	5.225
	(1)	(9)	(1)	(9)	(1)	(1)
c (Å)	11.45	11.45	11.45	11.44	11.45	11.44
	(3)	(3)	(3)	(2)	(3)	(3)
c/a	2.190	2.189	2.190	2.190	2.190	2.189
	(1)	(7)	(5)	(5)	(9)	(4)
Cell Volume	312.9	313.1	312.8	312.7	312.8	312.6
(Å ³)	(1)	(2)	(1)	(1)	(1)	(1)
Crystallite	27(7)	37(3)	29(9)	35(1)	32(5)	25(7)
size (nm)						
Microstrain	0.85	0.62(1)	0.79(2)	0.66(2)	0.72(1)	0.92(1)
(10^{-3})	(2)					
χ^2	1.529	1.620	1.461	1.479	1.436	1.430
Rp (%)	15.39	18.39	14.34	14.24	14.64	13.81
Rf ² (%)	8.49	13.37	8.49	7.72	8.69	7.71
Atomic position O1						
x	0.146	0.157	0.149	0.147	0.149	0.146
	(8)	(1)	(8)	(7)	(8)	(7)
у	0.010	-0.010	0.002	0.010	-0.003	0.011
	(7)	(8)	(6)	(6)	(7)	(6)
z	0.210	0.213	0.211	0.210	0.212	0.210
	(3)	(4)	(3)	(3)	(3)	(3)

Fig. 2. Tetragonal unit-cell of CaMoO₄, namely (a) CMO, (b) CMO1g, (c) CMO2g, (d) CMO3g, (e) CMO4g, and (f) CMO5g.

asymmetric stretching vibration of O-Mo-O vibration in the MoO_4^{2-} tetrahedron and to the bending of Mo-O vibration of the Au mode, respectively [42,43]. The absorption peak at 1638 cm⁻¹ was assigned to the C=N stretching vibration mode, while the bands at 1241, 1325, 1407, 1465, and 1568 cm⁻¹ were ascribed to aromatic C-N stretching vibration modes [44,45]. These absorption peaks increase with the increase of g-C₃N₄ on the composite. The wideband at 3419 cm⁻¹ is attributed to -OH from water or ethanol [46]. In contrast, a band at 2920 cm⁻¹ is attributed to the C-H stretching vibration from ethanol [46].

Raman spectroscopy (Fig. 3-II) was utilized to confirm the vibrational properties of $CaMoO_4/g-C_3N_4$ composites. The materials with scheelite structure have internal vibration referent to the oscillations inside the [MoO₄] molecular group, and external vibration referent to the motion of the cation and the rigid molecular unit [47,48]. CaMoO₄ crystals showed 26 different vibrations according to group theory calculations, as characterized by:

Fig. 3. FTIR (I) and Raman (II) of $CaMoO_4/g-C_3N_4$ being (a) CMO, (b) CMO1g, (c) CMO2g, (d) CMO3g, (e) CMO4g, (f) CMO5g, and (g) $g-C_3N_4$ pure.

$$\Gamma = 3A_g + 5A_u + 5B_g + 3B_u + 5E_g + 5E_u$$
(1)

where the A_g , B_g , and E_g are Raman-active vibration modes and the A and B modes are non-degenerating, while the E modes are doubly degenerating. In addition, the subscripts (g) and (u) represent the parity

under inversion in centrosymmetric CaMoO₄ crystals. Thus, the A_u and E_u modes correspond to the zero frequency of acoustic modes, but the others are optic modes. Moreover, the A_g, B_g, and E_g modes occur from the same motion of the CaMoO₄ crystal [38,49]. Consequently, CaMoO₄ crystals are estimated by 13 zone-center Raman-active modes, as represented by:

$$\Gamma_{Raman} = 3A_g + 5B_g + 5E_g \tag{2}$$

Also, Raman spectra of molybdates can be classified into two groups: external, which corresponds to the lattice phonon, which corresponds to the motion of $[CaO_8]$ clusters and the rigid cell units; and internal, which relates to the vibration inside $[MoO_4]$ cluster units, considering the center of mass in the stationary state [38,49].

Several peaks were observed in Fig. 3-II(a-f) referent to the Ramanactive internal modes of tetrahedral MoO₄: $\nu_1(A_g)$, $\nu_3(B_g)$, $\nu_3(Eg)$, $\nu_4(B_g)$, $\nu_2(A_g)$, R(E_g), and external T (E_gE_g). Ten modes of the CaMoO₄ crystal were identified and their frequencies presented values close to the values found for the theoretical frequency values [38], as can be seen in Table S1. The Raman spectrum of g-C₃N₄ is characteristic of several peaks due to the surface defects and disorders located at the edges of the graphite platelets [50]. Moreover, the band in 706 cm⁻¹ is assimilated to the breathing modes of the triazine ring [51]. The peak in 769 cm⁻¹ is assigned to the out-of-plane bending modes of graphitic domains [51], as seen in Fig. 3-II(g). The presence of 706 cm⁻¹ peaks referent to g-C₃N₄ is observed in CaMoO₄/g-C₃N₄ composites validating the occupancy of g-C₃N₄ jointly with CaMoO₄.

3.3. Morphological characterization

Fig. 4 shows the micrographs of the CaMoO4/g- C_3N_4 composites. The CMO particles formed by several nanoparticles form a cauliflowerlike shape (Fig. 4a), while g-C₃N₄ particles presented a nanosheet-like structure (Fig. 4g). The CaMoO₄ morphology is very dependent on the pH of the precursor solution and the sonochemistry synthesis time. Zhang et al. [52] and Wang et al. [53] demonstrated that CaMoO4 particles obtained by sonochemistry have their morphology changed according to solution pH, time, and the Ca/Mo ratio, with morphology varying between flower-, elliptical-, cauliflower- and spindle-shapes, for example. Thus, our samples have similar morphology because they were synthesized under equal pH, time, and Ca/Mo ratio conditions. However, the addition of $g-C_3N_4$ promoted nucleation points on its surface for the growth of CaMoO₄ particles, in which g-C₃N₄ particles were observed among several CaMoO₄ particles, as can be seen by EDS mapping in Fig. S3. This phenomenon occurs because the energy required for heterogeneous nucleation is less than the energy needed for nucleation in free space [54]. Also, the increase in $g-C_3N_4$ in the composite can favor observation of this phenomenon, raise interface formation between CaMoO₄ and g-C₃N₄ particles, and improve the composite properties.

3.4. Optical properties

Fig. 5 depicts the absorbance spectra (5A), estimated values (5B), and photoluminescence spectra (5C) for the bandgap energy of CaMoO₄/g-C₃N₄ composites. Bandgap energy (E_{gap}) values were estimated using the Kubelka-Munk function [55], followed by the Wood and Tauc method [56] because this analysis has been successfully used in many ternary oxides related to CaMoO₄ [57]. Bandgap energy (E_{gap}) values were estimated by $\alpha hv \propto (hv-E_{gap})^{1/p}$ [56], where α is the absorbance, *h* is the Planck constant, *v* is the frequency, and *p* indicates the different kinds of transitions. Molybdates with a scheelite-type tetragonal structure have been reported with a permitted direct electronic transition [58,59], so the results from CaMoO₄/g-C₃N₄ composites were analyzed assuming p = 1/2. The bandgap energy values of the CMO and g-C₃N₄ samples (Fig. 5B) are in accordance with the literature [60–63]. The remaining samples showed a bandgap value between CMO and

Fig. 4. FESEM images of CaMoO₄/g-C₃N₄, namely (a) CMO, (b) CMO1g, (c) CMO2g, (d) CMO3g, (e) CMO4g, (f) CMO5g, and (g) g-C₃N₄ pure.

 $g-C_3N_4$ samples. Additionally, an increase of $g-C_3N_4$ in the composite resulted in a bandgap value reduction and may provide conversion efficiency improvement of light irradiated in the photocatalytic process of CaMoO₄/g-C₃N₄ composites regarding pure CaMoO₄.

Photoluminescence spectra were measured to study the photogenerated charge recombination process of the CaMoO₄/g-C₃N₄ samples, as can be seen in Fig. 5C. The g-C₃N₄ sample showed the highest PL intensity with a peak centered around 475 nm, and the CaMoO₄ sample exhibited the lowest PL intensity with broadband centered around 525 nm. The strong PL signal of g-C₃N₄ is related to the quick recombination of photoexcited carriers, which can lead to poor performance in photocatalytic processes [64,65]. However, the PL intensity of the CaMoO₄/g-C₃N₄ composite had a significant decrease with the CMO5g sample (lowest intensity), which results from a low recombination rate

Fig. 5. (A) Absorbance spectra, (B) the bandgap values, and (C) Photoluminescence spectra of $CaMoO_4/g-C_3N_4$, namely (a) CMO, (b) CMO1g, (c) CMO2g, (d) CMO3g, (e) CMO4g, (f) CMO5g, and (g) pure $g-C_3N_4$.

of the photoexcited carriers. Thus, PL spectra may suggest a strong interaction and photogenerated carrier transfer between $g-C_3N_4$ and $CaMoO_4$.

3.5. Photocatalytic Activity

The photocatalytic activity of the CaMoO₄/g-C₃N₄ composites was examined with methylene blue (MB) under UV-Vis radiation ($\lambda \ge 254$ nm) for 180 minutes. As shown in Fig. 6a, the CMO sample shows low efficiency to MB discoloration in 180 minutes. On the other hand, discoloration efficiency increases when g-C₃N₄ was added to CMO. The CMO5g sample showed 95.1% of MB discoloration in 180 min, while the CMO sample had only 40.2%. Furthermore, the dye adsorption process on the photocatalyst particles increased with the insertion of g-C₃N₄, as observable in Fig. 6a. This phenomenon may be related to the greater surface area observed in nanosheet-like particles of g-C₃N₄, resulting in higher dye-particle interaction. However, the literature presents that CaMoO₄ generally has a low surface area, around 1 to $9 \text{ m}^2/\text{g}$ [66–68], while g-C₃N₄ obtained at 550°C have surface area of 64.3 m^2/g [33]. Moreover, the composite formation improved photocatalytic activity performance and confirmed photogenerated carrier transfer between g-C₃N₄ and CaMoO₄, as observable in the photoluminescence results (Fig. 5C). The photocatalytic process can be described by the pseudo-first-order kinetic model (Equation 3) [69] as shown in Fig. 6b.

$$\ln(C_t / C) = k_i \cdot t \tag{3}$$

In which: ki is the kinetic rate constant; C is the original concentration of MB dye; Ct is the MB dye concentration at time t. It is observable that the kinetic constant k increases as g-C₃N₄ increases, showing that the g-C₃N₄ concentration increase in the composite promotes higher MB dye discoloration.

The capacity to produce e^{-}/h^{+} radicals is decisive in the performance of photocatalysts due to these radicals reacting with oxygen to produce oxidizing species such as superoxide radical anion ($\bullet O_2^{-}$) and

Fig. 6. Variation of the MB dye discoloration as a function of the time (a) and kinetic discoloration evolution of (b) $CaMoO_4/g-C_3N_4$ composites.

hydroxyl radicals (•OH) which are dependent on conduction band (CB) and valence band (VB) potentials. These potentials are calculated using the following empirical equations [70]:

$$E_{CB} = \chi - E_e - 0.5E_{gap} \tag{4}$$

$$E_{VB} = E_{CB} + E_{gap} \tag{5}$$

In which: E_{VB} and E_{CB} are the valence (VB) and conduction (CB) potentials, respectively, E_e is the energy of free electrons vs. hydrogen (4.5 eV), E_{gap} is the bandgap energy of the semiconductor, and χ is the electronegativity of semiconductor. In turn, χ was calculated by the following equation [71]:

$$\chi = \left[x(A)^{a} x(B)^{b} x(C)^{c} \right]^{1/(a+b+c)}$$
(6)

In which: a, b, and c are the number of atoms in the compounds. The χ value for CaMoO₄ is 5.82 eV, and equivalent ECB and E_{VB} values are -0.65 eV/NHE and +3.30 eV/NHE, respectively. However, the χ value for g-C₃N₄ is 4.72 eV [72], and the equivalent E_{CB} and E_{VB} values are -1.33 eV/NHE and +1.77 eV/NHE, respectively. The UV radiation used may have allowed the excitation and generation of electron-hole pairs in both CaMoO₄ and g-C₃N₄, as observable in Fig. 7a. However, the ECB of g-C₃N₄ is less than the E_{CB} of CaMoO₄ and may result in an easily-photoinduced electron transfer from CB of g-C₃N₄ to CB CaMoO₄. Thus, the electrons in the CB CaMoO₄ are trapped by O_2 to form $\bullet O_2^-$, because the E_{CB} value of CaMoO₄ is smaller than the $E(O_2/\bullet O_2^-)$ (-0.33) eV/NHE [73]). On the other hand, the holes formed in the VB of CaMoO₄ can easily migrate to VB of g-C₃N₄ because the E_{VB} value of CaMoO₄ is larger than the E_{VB} of g-C₃N₄. However, the holes localized in the VB g-C₃N₄ cannot react with OH⁻ or H₂O to form \bullet OH, as the E(\bullet OH/H₂O) value (+2.38 eV/NHE [73]) is superior to EVB of g-C3N4. Also, the interaction of OH⁻ or H₂O with holes localized in the VB CaMoO₄ can result in the formation of •OH because the E(•OH/H₂O) value is less than the EVB CaMoO₄ value.

The EDTA, isopropyl alcohol, and AgNO₃ were utilized as inhibitors of h⁺, •OH, and e⁻, respectively [13]. The inhibitors were used to verify the photocatalytic mechanism of the CaMoO₄/g-C₃N₄ composite. As shown in Fig. 7b-c, the addition of EDTA and isopropyl alcohol reduced the photocatalytic activity, while the use of silver nitrate increased the discoloration capacity of CMO and CMO5g samples. Then, the principal mechanism acting on the photocatalytic activity is of the O₂⁻ because EDTA suppresses the h⁺ and raises the number of electrons during the photocatalytic process. Next, dye oxidation is a secondary acting mechanism because isopropyl alcohol suppresses the •OH radicals and reduces the oxidative capacity of the photocatalyst. According to the results, the photocatalytic process of MB discoloration over CaMoO₄/g-C₃N₄ composite is described as:

$$gC_{3}N_{4} + hv \rightarrow gC_{3}N_{4}(e^{-}) + gC_{3}N_{4}(h^{+})$$
(7)

$$CaMoO_4 + hv \rightarrow CaMoO_4(e^-) + CaMoO_4(h^+)$$
(8)

$$gC_3N_4(e^-) \rightarrow CaMoO_4(e^-) \tag{9}$$

$$CaMoO_4(e^-) + O_2 \rightarrow \cdot O_2^- \tag{10}$$

$$CaMoO_4(h^+) + OH^- \rightarrow CaMoO_4 + \cdot OH \tag{11}$$

$$\cdot O_2^-, h^+, \cdot OH + MB \rightarrow CO_2 + H_2O + \text{ other inorganic molecules}$$
 (12)

Fig. 8 shows the cyclic stability test of the CMO5g sample. As can be seen, there is little alteration in the photocatalytic capacity of the sample between the four consecutive cycles, in which the 1st, 2nd, 3rd and 4th cycles had 95%, 100%, 99% and 97% of MB discoloration, respectively. This result indicates that even with the application of consecutive cycles, the loss in photocatalytic efficiency is small and allows this composite to be applied in consecutive cycles.

Fig. 7. (a) Schematic illustration of the charge transfer pathway of the CaMoO₄/g-C₃N₄ composite catalyst under UV light irradiation and variation of the MB dye concentration for the (b) CMO and (c) CMO5g samples with and without charge inhibitors.

4. Conclusion

CaMoO₄-based g-C₃N₄ composites were successfully synthesized by the sonochemistry method with 0, 0.1, 0.2, 0.3, 0.4, and 0.5 of g-C₃N₄. The powders were characterized by X-ray diffraction (XRD), FT-IR, and Raman spectroscopies revealing crystals with a tetragonal scheelite

Fig. 8. Photocatalytic curves from cyclic stability test of CMO5g sample.

structure and long-range order and confirmed the presence of $g-C_3N_4$ in the samples. FEG-SEM micrographs of nanoparticles CaMoO₄ exhibited a cauliflower-like shape, while $g-C_3N_4$ particles presented a nanosheet-like morphology.

Photoluminescence spectra were also measured to study the photogenerated charge recombination process. In addition, the photocatalysis results showed that the g-C₃N₄ insertion into the composite favored the photocatalytic activity performance, in which there was an increase in photocatalytic activity from 40.2% (CMO) to 95.1% (CMO5g) due to photogenerated carrier transfer between g-C₃N₄ and CaMoO₄. This phenomenon occurs by easy photoinduced electron transfer from CB of g-C₃N₄ to CB CaMoO₄ and easy migration of holes formed in the VB of CaMoO₄ to VB of g-C₃N₄. Also, the trapping experiment showed that principal mechanism acting on the photocatalytic activity is O_2^- . Thus, a CaMoO₄/0.5g-C₃N₄ composite obtained by the sonochemistry method is a promising photocatalyst candidate since a value of 95.1% of MB discoloration in 180 min was observed with maintenance of its photocatalytic properties after consecutive use cycles. Finally, this study presents a new vision for the synthesis of nanocomposite materials with g-C₃N₄ by the sonochemistry method, enabling the synthesis of different binary oxides or ternary oxides, whether doped or undoped, together with g-C₃N₄ in different proportions in a simple way for improving properties.

CRediT authorship contribution statement

Anderson A.G. Santiago: Methodology, Visualization, Writing – original draft. Elida M. Macedo: Investigation, Methodology. Fernanda K.F. Oliveira: Writing – original draft. Ricardo L. Tranquilin: Investigation, Data curation. Marcio D. Teodoro: Data curation, Resources. Elson Longo: Resources. Fabiana V. Motta: Supervision. Mauricio R.D. Bomio: Writing – review & editing, Project administration.

Declaration of Competing Interest

The authors declare no competing financial interest.

Acknowledgment

The authors thank the following Brazilian research financing institutions for financial support: A.A.G. Santiago and M.R.D. Bomio acknowledges the financial support from the National Council for Scientific and Technological Development (*CNPq*) – Finance codes (140231/2018-8) and (303657/2017-0), respectively; the Coordination for the Improvement of Higher Education Personnel (CAPES) – Brazil with Finance Code 001; the Graduate Program in Materials Science and Engineering (PPGCEM-UFRN); and the Sao Paulo Research Foundation (*FAPESP*) (Process 2013/07296-2).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.materresbull.2021.111621.

References

- [1] S. Rahman, S. Samanta, A. Kuzmin, D. Errandonea, H. Saqib, D.L. Brewe, J. Kim, J. Lu, L. Wang, Tuning the Photoresponse of Nano-Heterojunction: Pressure-Induced Inverse Photoconductance in Functionalized WO₃ Nanocuboids, Advanced Science 6 (2019), 1901132.
- [2] R. Peymanfar, F. Fazlalizadeh, Fabrication of expanded carbon microspheres/ ZnAl₂O₄ nanocomposite and investigation of its microwave, magnetic, and optical performance, J. Alloys Compd. 854 (2021), 157273.
- [3] A.M.A. Henaish, B.I. Salem, T.M. Meaz, Y.A. Alibwaini, A.-W. Ajlouni, O. M. Hemeda, E.A. Arrasheed, Synthesize, characterization, dielectric, linear and nonlinear optical properties of Ni–Al Ferrite/PANI nanocomposite film, Opt. Mater. 119 (2021), 111397.
- [4] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C₃N₄ under visible light irradiation, Langmuir 26 (2010) 3894–3901.
- [5] Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-scheme Ag₃PO₄/g-C₃N₄ composite in converting CO₂ to fuel, Environ Sci Technol 49 (2015) 649–656.
- [6] J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, P. Chen, G. Jiang, Z. Wang, F. Dong, Nitrogen defect structure and NO⁺ intermediate promoted photocatalytic NO removal on H₂ treated g-C₃N₄, Chem. Eng. J. 379 (2020), 122282.
- [7] W. Hu, J. Yu, X. Jiang, X. Liu, R. Jin, Y. Lu, L. Zhao, Y. Wu, Y. He, Enhanced photocatalytic activity of g-C₃N₄ via modification of NiMoO₄ nanorods, Colloids Surf. A Physicochem. Eng. Asp. 514 (2017) 98–106.
- [8] T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C₃N₄ interlayers for enhanced photocatalysis, ACS Catal 6 (2016) 2462–2472.
- [9] E. Pavitra, G.S.R. Raju, S.M. Ghoreishian, L.K. Bharat, S.R. Dugasani, J.Y. Park, S. H. Park, J.S. Yu, Y.-K. Han, Y.S. Huh, Streptavidin activated hydroxyl radicals enhanced photocatalytic and photoelectrochemical properties of membrane-bound like CaMoO₄:Eu³⁺ hybrid structures, J. Mater. Chem. A 7 (2019) 23105–23120.
- [10] E. Vesali-Kermani, A. Habibi-Yangjeh, H. Diarmand-Khalilabad, S. Ghosh, Nitrogen photofixation ability of g-C₃N₄ nanosheets/Bi₂MoO₆ heterojunction photocatalyst under visible-light illumination, J Colloid Interface Sci 563 (2020) 81–91.
- [11] F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Construction of Ag SPR-promoted stepscheme porous g-C₃N₄/Ag₃VO₄ heterojunction for improving photocatalytic activity, Appl. Surf. Sci. 488 (2019) 151–160.
- [12] S. Zhao, J. Wu, Y. Xu, Z. Wang, Y. Han, X. Zhang, Ag₂CO₃-derived Ag/g-C₃N₄ composite with enhanced visible-light photocatalytic activity for hydrogen production from water splitting, Int. J. Hydrog. Energy (2020).
- [13] A.A.G. Santiago, E.M. Macedo, F.K.F. Oliveira, F.V. Motta, M.R.D. Bomio, Synthesis and characterization of BaWO₄:xTm³⁺,yPr³⁺ obtained by ultrasonic spray pyrolysis, J. Mater. Sci. Mater. Electron. 31 (2020) 11599–11608.
- [14] A.A.G. Santiago, N.F. Andrade Neto, E. Longo, C.A. Paskocimas, F.V. Motta, M.R. D. Bomio, Fast and continuous obtaining of Eu³⁺ doped CeO₂ microspheres by ultrasonic spray pyrolysis: characterization and photocatalytic activity, J. Mater. Sci. Mater. Electron. 30 (2019) 11508–11519.
- [15] E.A.C. Ferreira, N.F.A. Neto, A.A.G. Santiago, C.A. Paskocimas, M.R.D. Bomio, F. V. Motta, Synthesis and characterization of α-Ag₂MoO₄/β-Ag₂MoO₄ heterostructure obtained by fast and simple ultrasonic spray pyrolysis method at different temperatures, J. Mater. Sci. Mater. Electron. 31 (2020) 4271–4278.
- [16] Y. Huo, Z. Wang, J. Zhang, C. Liang, K. Dai, Ag SPR-promoted 2D porous g-C₃N₄/ Ag₂MoO₄ composites for enhanced photocatalytic performance towards methylene blue degradation, Appl. Surf. Sci. 459 (2018) 271–280.
- [17] M. Sumathi, A. Prakasam, P. Anbarasan, A facile microwave stimulated g-C₃N₄/ α-Fe₂O₃ hybrid photocatalyst with superior photocatalytic activity and attractive cycling stability, J. Mater. Sci. Mater. Electron. 30 (2019) 10985–10993.
- [18] H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Synthesis and characterization of g-C₃N₄/Bi₂MoO₆ heterojunctions with enhanced visible light photocatalytic activity, Appl. Catal. B 160-161 (2014) 89–97.
- [19] C.V. Reddy, R. Koutavarapu, I.N. Reddy, J. Shim, Effect of a novel one-dimensional zinc tungsten oxide nanorods anchored two-dimensional graphitic carbon nitride nanosheets for improved solar-light-driven photocatalytic removal of toxic pollutants and photoelectrochemical water splitting, J. Mater. Sci. Mater. Electron. 32 (2021) 33–46.
- [20] E. Vesali-Kermani, A. Habibi-Yangjeh, H. Diarmand-Khalilabad, S. Ghosh, Nitrogen photofixation ability of g-C₃N₄ nanosheets/Bi₂MoO₆ heterojunction photocatalyst under visible-light illumination, J. Colloid Interface Sci. 563 (2020) 81–91.
- [21] S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Synthesis and characterization of rod-like CaMoO₄ nanostructure via free surfactant sonochemical route and its photocatalytic application, J. Mater. Sci. Mater. Electron. 27 (2016) 4351–4355.
- [22] C.R.R. Almeida, L.X. Lovisa, A.A.G. Santiago, M.S. Li, E. Longo, C.A. Paskocimas, F. V. Motta, M.R.D. Bomio, One-step synthesis of CaMoO₄:Eu³⁺ nanospheres by ultrasonic spray pyrolysis, J. Mater. Sci. Mater. Electron. 28 (2017) 16867–16879.

A.A.G. Santiago et al.

- [23] S. Sinha, M.K. Mahata, K. Kumar, S.P. Tiwari, V.K. Rai, Dualistic temperature sensing in Er³⁺/Yb³⁺ doped CaMoO₄ upconversion phosphor, Spectrochim. Acta A 173 (2017) 369–375.
- [24] A.I. Becerro, M. Allix, M. Laguna, D. González-Mancebo, C. Genevois, A. Caballero, G. Lozano, N.O. Núñez, M. Ocaña, Revealing the substitution mechanism in Eu³⁺: CaMoO₄ and Eu³⁺, Na⁺:CaMoO₄ phosphors, J. Mater. Chem. C 6 (2018) 12830–12840.
- [25] L. Jinping, T. ZHANG, Z. Gangqiang, Z. Hairong, Up-conversion photoluminescence emissions of CaMoO₄:Pr³⁺/Yb³⁺ powder, J. Rare Earths 35 (2017) 645–651.
- [26] R. Dey, V.K. Rai, Er³⁺-Tm³⁺-Yb³⁺:CaMoO₄ phosphor as an outstanding upconversion-based optical temperature sensor and optical heater, Methods Appl. Fluoresc. 5 (2017), 015006.
- [27] S. Karki, P. Aryal, D. Ha, H.J. Kim, H.K. Park, I.R. Pandey, Synthesis, Luminescence and Optical Properties of a CaMoO₄ Nano-Powder Prepared by Using the Precipitation Method, J Korean Phys Soc 75 (2019) 534–540.
- [28] S. Li, Q. Meng, S. Lü, W. Sun, Study on optical temperature sensing properties of Tb³⁺, Eu³⁺ co-doped CaMoO₄ phosphor, J. Lumin. 200 (2018) 103–110.
- [29] Y. Ding, J. Liu, Y. Zhu, S. Nie, W. Wang, J. Shi, Y. Miu, X. Yu, Brightly luminescent and color-tunable CaMoO₄: RE³⁺(RE= Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes, J. Mater. Sci. 53 (2018) 4861–4873.
- [30] G. Botelho, I.C. Nogueira, E. Moraes, E. Longo, Study of structural and optical properties of CaMoO₄ nanoparticles synthesized by the microwave-assisted solvothermal method, Mater. Chem. Phys. 183 (2016) 110–120.
- [31] G.M. Gurgel, L.X. Lovisa, L.M. Pereira, F.V. Motta, M.S. Li, E. Longo, C. A. Paskocimas, M.R.D. Bomio, Photoluminescence properties of (Eu, Tb, Tm) codoped PbMoO₄ obtained by sonochemical synthesis, J. Alloys Compd. 700 (2017) 130–137.
- [32] J.H. Bang, K.S. Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials, Advanced Materials 22 (2010) 1039–1059.
- [33] F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Efficient synthesis of polymeric g-C₃N₄ layered materials as novel efficient visible light driven photocatalysts, J. Mater. Chem. 21 (2011) 15171–15174.
- [34] H. Rietveld, A profile refinement method for nuclear and magnetic structures, J Appl Crystallogr 2 (1969) 65–71.
- [35] B. Toby, EXPGUI, a graphical user interface for GSAS, J Appl Crystallogr 34 (2001) 210–213.
- [36] L. Zhu, Y. Mao, Q. Chen, Y. Zou, X. Shen, G. Liao, Synthesis and optical properties of coil-ball-like CaMoO₄ hierarchical architectures, J. Mater. Sci. Mater. Electron. 30 (2019) 3639–3646.
- [37] A.K.V. Raj, P. Prabhakar Rao, T.S. Sreena, T.R. Aju Thara, Broad greenish-yellow luminescence in CaMoO₄ by Si⁴⁺ acceptor doping as potential phosphors for white light emitting diode applications, J. Mater. Sci. Mater. Electron. 29 (2018) 16647–16653.
- [38] V. Panchal, N. Garg, H.K. Poswal, D. Errandonea, P. Rodríguez-Hernández, A. Muñoz, E. Cavalli, High-pressure behavior of CaMoO₄, Phys. Rev. Mater. 1 (2017), 043605.
- [39] R. Bhosale, S. Jain, C.P. Vinod, S. Kumar, S. Ogale, Direct Z-Scheme g-C₃N₄/FeWO₄ Nanocomposite for Enhanced and Selective Photocatalytic CO₂ Reduction under Visible Light, ACS Appl Mater Interfaces 11 (2019) 6174–6183.
- [40] F.K.F. Oliveira, M.C. Oliveira, L. Gracia, R.L. Tranquilin, C.A. Paskocimas, F. V. Motta, E. Longo, J. Andrés, M.R.D. Bomio, Experimental and theoretical study to explain the morphology of CaMoO₄ crystals, J Phys Chem Solids 114 (2018) 141–152.
- [41] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J Appl Crystallogr 44 (2011) 1272–1276.
- [42] B.P. Singh, A.K. Parchur, R.S. Ningthoujam, A.A. Ansari, P. Singh, S.B. Rai, Influence of Gd³⁺ co-doping on structural property of CaMoO₄:Eu nanoparticles, Dalton Trans 43 (2014) 4770–4778.
- [43] A.K. Parchur, R.S. Ningthoujam, Preparation and structure refinement of Eu³⁺ doped CaMoO₄ nanoparticles, Dalton Trans 40 (2011) 7590–7594.
- [44] B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C₃N₄ /Ag₂WO₄ photocatalyst, Appl. Surf. Sci. 391 (2017) 175–183.
- [45] X. Chen, D.-H. Kuo, D. Lu, Nanonization of g-C₃N₄ with the assistance of activated carbon for improved visible light photocatalysis, RSC Adv 6 (2016) 66814–66821.
- [47] R.L. Tranquilin, L.X. Lovisa, C.R.R. Almeida, C.A. Paskocimas, M.S. Li, M. C. Oliveira, L. Gracia, J. Andres, E. Longo, F.V. Motta, M.R.D. Bomio, Understanding the White-Emitting CaMoO₄ Co-Doped Eu³⁺, Tb³⁺, and Tm³⁺ Phosphor through Experiment and Computation, J. Phys. Chem. C 123 (2019) 18536–18550.
- [48] A.A.G. Santiago, R.L. Tranquilin, P. Botella, F.J. Manjón, D. Errandonea, C. A. Paskocimas, F.V. Motta, M.R.D. Bomio, Spray pyrolysis synthesis and characterization of Mg_{1-x}Sr_xMoO₄ heterostructure with white light emission, J. Alloys Compd. 813 (2020), 152235.
- [49] V.S. Marques, L.S. Cavalcante, J.C. Sczancoski, A.F.P. Alcântara, M.O. Orlandi, E. Moraes, E. Longo, J.A. Varela, M.Siu Li, M.R.M.C. Santos, Effect of Different Solvent Ratios (Water/Ethylene Glycol) on the Growth Process of CaMoO₄ Crystals and Their Optical Properties, Cryst. Growth Des. 10 (2010) 4752–4768.

- [50] H. Zhao, Y. Dong, P. Jiang, H. Miao, G. Wang, J. Zhang, In situ light-assisted preparation of MoS₂ on graphitic C₃N₄ nanosheets for enhanced photocatalytic H₂ production from water, J. Mater. Chem. A 3 (2015) 7375–7381.
- [51] Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C₃N₄) Photocatalyst Activated by Visible Light, ACS Catal 4 (2014) 774–780.
- [52] J. Zhang, L. Li, W. Zi, N. Guo, L. Zou, S. Gan, G. Ji, Self-assembled CaMoO₄ and CaMoO₄:Eu³⁺ hierarchical superstructures: Facile sonochemical route synthesis and tunable luminescent properties, J Phys Chem Solids 75 (2014) 878–887.
- [53] Y. Wang, L. Yang, Y. Wang, X. Wang, G. Han, Controlled synthesis of CaMoO₄ and SrMoO₄ rods by a simple sonochemical method, J. Ceram. Soc. JAPAN 120 (2012) 378–381.
- [54] Y. Tian, F. Cheng, X. Zhang, F. Yan, B. Zhou, Z. Chen, J. Liu, F. Xi, X. Dong, Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride–Bi₂MoO₆ heterojunctions, Powder Technol 267 (2014) 126–133.
- [55] L. Tolvaj, K. Mitsui, D. Varga, Validity limits of Kubelka–Munk theory for DRIFT spectra of photodegraded solid wood, Wood Sci. Technol. 45 (2011) 135–146.
- [56] D.L. Wood, J. Tauc, Weak Absorption Tails in Amorphous Semiconductors, Phys. Rev. B 5 (1972) 3144–3151.
- [57] D. Errandonea, A. Muñoz, P. Rodríguez-Hernández, J.E. Proctor, F. Sapiña, M. Bettinelli, Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO₄, PbSeO₄, SrCrO₄, and SrSeO₄, Inorg. Chem. 54 (2015) 7524–7535.
- [58] V. Monteseguro, J. Ruiz-Fuertes, J. Contreras-García, P. Rodríguez-Hernández, A. Muñoz, D. Errandonea, High pressure theoretical and experimental analysis of the bandgap of BaMoO₄, PbMoO₄, and CdMoO₄, Appl. Phys. Lett. 115 (2019), 012102.
- [59] A.A.G. Santiago, C.R.R. Almeida, R.L. Tranquilin, R.M. Nascimento, C. A. Paskocimas, E. Longo, F.V. Motta, M.R.D. Bomio, Photoluminescent properties of the Ba_{1-x}Zn_xMoO₄ heterostructure obtained by ultrasonic spray pyrolysis, Ceram. Int. 44 (2018) 3775–3786.
- [60] S. Dutta, S. Som, A.K. Kunti, V. Kumar, S.K. Sharma, H.C. Swart, H.G. Visser, Structural and luminescence responses of CaMoO₄ nano phosphors synthesized by hydrothermal route to swift heavy ion irradiation: Elemental and spectral stability, Acta Mater 124 (2017) 109–119.
- [61] A. Pandey, V. Kumar, S. Som, A. Yousif, R.E. Kroon, E. Coetsee, H.C. Swart, Photon and electron beam pumped luminescence of Ho³⁺ activated CaMoO₄ phosphor, Appl. Surf. Sci. 423 (2017) 1169–1175.
- [62] P. Praus, L. Svoboda, M. Ritz, I. Troppová, M. Šihor, K. Kočí, Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide, Mater. Chem. Phys. 193 (2017) 438–446.
- [63] L. Svoboda, P. Praus, M.J. Lima, M.J. Sampaio, D. Matýsek, M. Ritz, R. Dvorský, J. L. Faria, C.G. Silva, Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation, Mater. Res. Bull. 100 (2018) 322–332.
- [64] W. Liu, J. Zhou, J. Yao, Shuttle-like CeO₂/g-C₃N₄ composite combined with persulfate for the enhanced photocatalytic degradation of norfloxacin under visible light, Ecotoxicol Environ Saf 190 (2020), 110062.
- [65] W. Zhang, C. Xu, E. Liu, J. Fan, X. Hu, Facile strategy to construction Z-scheme ZnCo₂O₄/g-C₃N₄ photocatalyst with efficient H₂ evolution activity, Appl. Surf. Sci. 515 (2020), 146039.
- [66] L. Wang, Q. Song, X. Guo, N. Wang, X. Wang, Y. Han, J. Xie, Synthesis of hollow spindle-like CaMoO₄: Ln³⁺(Tb, Eu) phosphors for detection of iron(III) ions, Optik 185 (2019) 957–964.
- [67] A.M. Huerta-Flores, I. Juárez-Ramírez, L.M. Torres-Martínez, J.E. Carrera-Crespo, T. Gómez-Bustamante, O. Sarabia-Ramos, Synthesis of AMoO₄ (A = Ca, Sr, Ba) photocatalysts and their potential application for hydrogen evolution and the degradation of tetracycline in water, J. Photochem. Photobiol. A 356 (2018) 29–37.
- [68] Y.-S. Luo, X.-J. Dai, W.-D. Zhang, Y. Yang, C.Q. Sun, S.-Y. Fu, Controllable synthesis and luminescent properties of novel erythrocyte-like CaMoO₄ hierarchical nanostructures via a simple surfactant-free hydrothermal route, Dalton Trans 39 (2010) 2226–2231.
- [69] M.M. Momeni, M. Hakimian, A. Kazempour, In-situ manganese doping of TiO₂ nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: A good visible-light photocatalyst, Ceram. Int. 41 (2015) 13692–13701.
- [70] S.R. Morrison, Electrochemistry at semiconductor and oxidized metal electrodes, (1980).
- [71] M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation, J. Colloid Interface Sci. 480 (2016) 218–231.
- [72] K. Dai, L. Lu, C. Liang, G. Zhu, Q. Liu, L. Geng, J. He, A high efficient graphitic-C₃N₄/BiO1/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material, Dalton Trans 44 (2015) 7903–7910.
- [73] S. Deng, W. Zhang, Z. Hu, Z. Feng, P. Hu, H. Wu, L. Ma, Y. Pan, Y. Zhu, G. Xiong, Dual-functional Bi³⁺, Dy³⁺ co-doping ZnWO₄ for photoluminescence and photocatalysis, Appl. Phys. A 124 (2018) 526.

Materials Research Bulletin 146 (2022) 111621