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A B S T R A C T   

Here, an experimental study is presented on the structural, electronic, and optical properties of Bi2-xMoO6:xEu3+

(x = 0, 0.5, 1.0, 2.0, and 4.0 mol%) materials, synthesized by means of the microwave-assisted solvothermal 
method using ethylene glycol as a solvent. Different characterization techniques (X-ray diffraction measurements 
with Rietveld refinements, Raman and ultraviolet–visible diffuse reflectance spectroscopy, field emission scan-
ning electron microscopy, and photoluminescence emissions) have been employed to examine the structural and 
electronic properties, energy transfer and defect evolution which control the performance of the as-synthetized 
materials. Present findings provide deep insights into the substitution of Eu3+ cations in Bi2MoO6, with focus on 
their influence on process that dictate the superior optical properties.   

1. Introduction 

The emergence of precise and scalable synthetic methods for pro-
ducing new photoluminescent (PL) materials provides opportunities to 
tune photophysical properties beyond their band gaps, and to incorpo-
rate them in optical devices. The substitution of rare-earth (RE3+) cat-
ions, acting as activators, in inorganic compounds, is capable to change 
the local structures towards the modulation of their electrical and op-
tical properties, and playing a crucial role in light-emitting materials 
[1–5]. Moreover, these materials have attracted considerable attention 
for applications in different fields such as optical amplifiers, biomedical 
diagnostics, and optical bioprobes [6–10]. In particular, the PL spectra 
are associated with the abundant 4f orbitals electron configuration, 
displaying mainly 4f–4f, 4f–5d, and charge transfer transitions, which 
results in narrow emission lines, high photostability, and an intense 
luminescence from ultraviolet (UV) to near-infrared [11]. Among RE3+

cations, europium (Eu3+) is the most promising for this purpose and it 
exhibits intense PL red emission due to 5D0 → 7F2 transition around 615 
nm [12–14]. Examples of Eu3+ cations substitution in different kinds of 

materials like glasses, organic compounds, polymers, inorganic matrix, 
among others, are extensively reported [15–24]. 

Bismuth oxides of formula (Bi2O2)2+(An− 1BnO3n+1)2− (A = Ca, Sr, 
Ba, Pb, Bi, Na, K, and B = Ti, Nb, Ta, Mo, W, Fe) are interesting materials 
due to their layered structure composed of perovskite slabs of 
(An− 1BnO3n+1)2− between (Bi2O2)2+ layers. One representative example 
of this family is the bismuth molybdate, Bi2MoO6 (BMO), due to its 
versatile applications, including gas sensing [25], electrical [26–31] and 
photocatalytic [32–56] properties. A wide variety of synthesis methods 
have been employed to obtain BMO, such as co-precipitation and 
spray-drying [55], sol-gel [57], mechanochemical [34], sonochemical 
[58], solid-state [38,50,59], hydrothermal [25,32,33,45,47,49,51,52, 
60–66], polymeric precursor [67], and citric acid complex process [68], 
among others [69]. 

The structure, PL and photocatalytic properties of a wide range of 
BMO materials with presence of RE3+ cations were studied in depth 
[59–64,67,68,70–74]. However, these materials were obtained by 
expensive and long-lasting methods and most of the time presented low 
PL emissions. In previous studies, our research group has successfully 
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obtained Eu3+ substitution in different materials such as α-Ag2WO4 [5, 
75–77], ZrO2 [78,79], CaMoO4 [80], ZnMoO4 [81], and CaZrO3. [82] 
Additionally, Eu3+ cations substituted in BMO material was only ob-
tained by conventional hydrothermal [61,63,64,83,84], sol-gel [85], 
solid-state [59,72,86–88], and citric acid complex [68] methods so far. 
Therefore, environmentally friendly synthetic procedure of these ma-
terials with outstanding optical efficiency is still challenging. 

For the successful manufacturing of such materials, the structure, 
distribution, and electronic properties of the RE3+ cations on the host 
lattice must be known. To the best of our knowledge, the characteriza-
tion and studies of optical properties of the as-synthetized Bi2-xMoO6: 
xEu3+ (BMOxEu) samples by the microwave-assisted solvothermal 
(MAS) method are lacking. This study systematically investigated the 
effect of the addition of different amounts of Eu3+ cations into the BMO 
host lattice on the structural, electronic and optical properties. These 
samples were obtained by the MAS method using low temperature and 
short reaction time, and the samples were denoted as BMO, BMO0.5Eu, 
BMO1Eu, BMO2Eu, and BMO4Eu, corresponding to the pure-Bi2MoO6, 
0.5, 1.0, 2.0, and 4.0 mol% Eu3+ samples, respectively. 

2. Results and discussion 

The BMOxEu materials were efficiently synthesized by the MAS 
method at 160 ◦C for 32 min. X-ray diffraction (XRD) patterns of the 
BMOxEu crystals, illustrated in Fig. 1A, showed narrow and sharp peaks 
indicating a high degree of crystallinity in all cases and are in good 
agreement with an orthorhombic structure with Pca21 space group ac-
cording to the inorganic crystal structure database, ICSD 20–1685 [89]. 
Thus, no impurities were detected and the percentage of Eu3+ cations 
was not sufficient to form secondary phases. Fig. SI-1 (a-e) shows the 
Rietveld refinement plot of observed versus calculated pattern of the 
BMOxEu crystals. The difference between XRD profiles for experimen-
tally observed and theoretically calculated was at near zero in the in-
tensity scale, as shown by the line (YObs - YCalc). Tables SI–1 shows the 
experimental lattice parameters and details on the quality of the struc-
tural refinement. Small deviations of the statistical parameters (Rw and 
GOF) were observed, attesting the reliability and accuracy of the 
refinement results. 

Fig. 1B shows the unit cell representation of the BMO1Eu structure 
simulated through the visualization for electronic and structural anal-
ysis (VESTA) program [90,91] using the lattice parameters and atomic 
positions listed in Tables SI–1. The BMO1Eu unit cell observed is 

constituted of two types of Bi octahedral clusters, namely [Bi(1)O6] and 
[Bi(2)O6], and one type of Mo octahedral cluster, namely [MoO6]. The 
Bi3+-by-Eu3+ substitution is attested by the percentage of the ion radius 
between the host ion and the doped ion, which usually is less than 30%. 
Considering Bi3+ (CN = 6, IR = 1.03 Å), Mo6+ (CN = 6, IR = 0.59 Å), and 
Eu3+ (CN = 6, IR = 0.947 Å) cations [92], the calculated percentages of 
Bi3+ and Mo6+ are 8.05% and − 60.5%, respectively. As a consequence, 
the refinement results show that the Eu3+ cations may occupy either [Bi 
(1)O6] or [Bi(2)O6] clusters in the BMO lattice [93]. Also, a percentage 
of Eu3+ cations can also be presented in the interstitial sites of the host 
lattice, as the lattice parameters do not change systematically. It hap-
pens because Eu3+ cations are treated as impurities into the host lattice 
which dramatically decrease the organization of the (MoO4)2- and 
(Bi2O2)2+ layers within the crystal lattice, promoting the formation of 
structural defects (oxygen vacancies, distortion of bonds, stresses, 
strains, etc.). These results are similar to those observed for other RE3+

substituted BMO materials in which refinement results show a mean of 
the overall values of substitution, not necessarily indicating the precise 
location of Eu3+ cations [67,71,72]. 

Fig. 1C presents the obtained Raman spectra for BMOxEu crystals 
synthesized by the MAS method. The increasing concentration of Eu3+

cations in the crystalline network has a marked effect on the intensity of 
all vibrational modes, indicating that the substitution of Bi3+ cations 
causes changes in the chemical environment capable of promoting 
octahedral distortions, reducing symmetry and, consequently, 
decreasing the structural order at a short-range. In particular, the band 
at 800 cm− 1 which corresponds to the stretching mode of the Mo–O 
bond in the octahedral [MoO6] cluster, can be considered as a signature 

Fig. 1. (A) XRD patterns, (B) Schematic representation of the unit cell of BMO1Eu, and (C) Raman spectra of (a) BMO, (b) BMO0.5Eu, (c) BMO1Eu, (d) BMO2Eu, and 
(e) BMO4Eu crystals. 

Table 1 
FWHM of 800 cm− 1 Raman band, Egap, and CIE chromatic coordinates of 
emission spectra of BMOxEu crystals.  

Bi2-xMoO6: 
xEu3+

Raman 
FWHM 

Egap 

(eV) 
Chromatic coordinate 

λexc = 355 nm λexc = 290 nm 

x y x y 

x = 0 29.01 3.03 0.299 0.263 0.548 0.424 
x = 0.5 31.10 3.05 0.230 0.214 0.560 0.415 
x = 1 33.28 3.15 0.280 0.297 0.562 0.414 
x = 2 34.16 3.14 0.226 0.225 0.549 0.424 
x = 4 42.40 3.31 0.281 0.270 0.547 0.426  
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of the structural change of the BMO lattice provoked by the inclusion of 
Eu3+ cations. Table 1 presents the values of the full width at half 
maximum (FWHM) for the mode at 800 cm− 1. An analysis of the results 
renders an increment of the FWHM values as the Eu3+ concentration 
increases, as well as appreciable decrease of the intensity for this band. 
In addition, we can also sense a general broadening of all vibrational 
modes as the amount of Eu3+ cations increases, and it is also reported in 
previously studies devoted to the substitution of RE3+ cations in the 
BMO [61,71]. 

Fig. SI-2(A) shows the UV–vis diffuse reflectance spectra for the 
BMOxEu crystals, which showed absorption in the visible range of 
approximately 450 nm for all crystals. Fig. SI-2(B) shows the graphs 
obtained by the Kubelka & Munk-Aussig method for BMOxEu crystals 
and the Egap values obtained are listed in Table 1. It was observed a small 
increase on the Egap values as the Eu3+ concentration increases. Besides 
the limitation of the equipment and the band gap estimation due to the 
small percentage of Eu3+ cations, the increase on the values can also be 
attributed to the presence of structural defects, and different acceptor 
species in the valence band (VB) region associated with donator species 
in the conduction band (CB) region. Specifically, for the BMOxEu crys-
tals, the variation in the band gap values may be due to Eu3+ 4f orbitals 
which are responsible for generating separation between VB and CB as 
cited in other published works [61,62,67,71,93]. 

Photoluminescence (PL) measurements were performed by two 
distinct equipment. Firstly, Fig. 2 shows the PL emission spectra of the 
BMOxEu crystals under laser excitation at a wavelength of 355 nm. PL 
emission band of semiconductor materials are mainly originated by the 
recombination of photo-generated electron-hole pairs [94]. Particularly, 
the PL emission band at 445 nm is due recombination of these pairs 
within the [MoO6] clusters. Moreover, for BMOxEu crystals, Eu3+ cat-
ions are responsible for increasing the structural and electronic defects 
due to [EuO6] clusters, contributing to the broadening and different 
intensity of this band. These results indicate that the PL behavior arises 
from intrinsic defects of the host lattice, and extrinsic defects due to 
Eu3+ cations [59]. Additionally, for BMOxEu crystals, a narrow and 
well-defined peak characteristic of the Eu3+ cations at 615 nm was 
observed, related to the 5D0→7F2 transition. Finally, plate/flake-like 
morphologies tend to have the largest specific surface area and the 
strongest light absorption, which contributed to the results observed 
[61]. 

Secondly, PL excitation and PL emission spectra were performed on a 
Xe lamp source equipment. Fig. 3A shows the PL excitation spectra of 
BMOxEu crystals monitoring the emission wavelength at 615 nm, which 
represents the Eu3+ cations maximum PL emission ascribed to the 
5D0→7F2 transition. A broad band in the range of 250–375 nm is 

observed for all samples which is characteristic of mixed and indistin-
guishable: i) ligand-to-metal charge transfer (LMCT) state of O2− →Mo6+

of the [MoO6] clusters and ii) charge transfer band (CTB) of O2− → Eu3+

[72,93]. A peak located at 394 nm was also observed, which is related to 
the 7F0→5L6 transition of Eu3+ cations [75,76]. Fig. 3B shows the PL 
emission spectra for BMOxEu crystals when excited at 290 nm, 
maximum intense of the absorption band observed in the PL excitation 
spectra. Analyzing Fig. 3B, well-defined peaks can be ascribed to the f-f 
transitions of the Eu3+ cations which are located at 592 (5D0→7F1), 615 
(5D0→7F2), and 695 nm (5D0→7F4). These results illustrate that Eu3+

cations with low 4f → 4f absorption efficiency in the NUV region can be 
an activator of the red emitting phosphor and be excited by UV LEDs. 
Therefore, BMO matrix acts as an efficient host activator for the Eu3+

cations due to the energy transfer from the [MoO6] to the [EuO6] 
clusters. 

Comparing the samples, BMO1Eu present the highest PL intensity, 
ascribing 1.0 mol% Eu3+ cations as the quenching concentration for this 
matrix. Moreover, Eu3+ cations can be used as a site environmental 
probe due to the relative ratio of the 5D0→7F1 (magnetic dipole) and 
5D0→7F2 (electric dipole) transitions. It is clearly seen that the 5D0→7F2 
transition is more intense than the 5D0→7F1 one, indicating that Eu3+

cations are located predominantly in a site without inversion of sym-
metry [63,95]. Fig. 3C shows a schematic energy level diagram and a 
proposed energy transfer mechanism under 290 nm excitation for the 
BMOxEu crystals. It is observed that under excitation at 290 nm, elec-
trons are excited from valence band (VB) into the charge transfer state 
(CTS) of the [MoO6] clusters. Then, the excitation energy is transferred 
from the [MoO6] clusters to the 5D4 level of Eu3+ cations. Finally, Eu3+

cations in the populated 5D4 level undergo multiphonon relaxation to 
the luminescent 5D0 level that radiatively relax to 7FJ (J = 1, 2, and 4) 
levels, resulting in the characteristic PL emissions of Eu3+ cations. 

Measurement of color that the human eye perceives was evaluated 
by the Commission internationale de l′ éclairage (CIE) chromaticity dia-
gram. Fig. 4 shows the CIE diagram for the samples excited at 355 nm 
(Figs. 4A) and 290 nm (Fig. 4B), and the calculated values for the x and y 
coordinates are listed in Table 1. When the crystals are excited by 355 
nm laser, blue region color is observed due to the predominant intense 
PL emission within [MoO6] clusters, whereas at 290 nm excitation, 
orange-red color intense PL emission is observed because of higher Eu3+

f-f transitions contribution. For BMO1Eu crystal, the values for the x and 
y coordinates are close to those published for the chromaticity co-
ordinates of the international standards of commercial phosphorus. This 
result point out that 1.0 mol% Eu3+ is the best concentration for phos-
phor application in the red emitting region of electromagnetic spectrum 
[77]. 

Field emission scanning electron microscopy (FE-SEM) images of 
BMOxEu crystals are shown in Fig. 5. The images confirm the flake-like 
morphology and smooth surfaces of the crystals, as similarly reported by 
Y. Zhu et al. and L. Xie et al. [46,53,69,96] BMO0.5, BMO1Eu, and 
BMO2Eu crystals show little variation in the organization patterns of the 
platelets, as well as in the width and length of the crystallites. For the 
BMO4Eu crystal, a decrease in the lateral dimensions of the crystallites is 
observed, while maintaining homogeneous thickness with values in the 
15–45 nm range. Considering the Ostwald ripening model for crystal 
growth, it can be affirmed that the excess defect constituted by the 
addition of a high concentration of Eu3+ cations created a larger number 
of crystallite germination centers, therefore reducing the size of each 
one [53,61,62]. 

3. Conclusions 

Bi2-xMoO6:xEu3+ (x = 0, 0.5, 1.0, 2.0, and 4.0 mol%) materials were 
prepared via MAS method using ethylene glycol as a solvent. The 
orthorhombic structure was confirmed by XRD patterns without the 
presence of secondary phases, whereas the results for the Raman spec-
troscopy confirm structural short-range disorder as shown by the Fig. 2. PL emission spectra of the BMOxEu crystals excited by a 355 nm laser.  
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enlargement of the vibrational modes. UV–vis spectroscopy results 
render that the substitution of Eu3+ cations favors the increase of the 
value of the direct band gap. The intensity of the PL emission intensity is 
enhanced as the Eu3+ concentration increases, and the optimal con-
centration is 1.0 mol% Eu3+ cations. In addition, it is quite clear that PL 
and photocatalysis in a semiconductor are closely related; in future 

projects will study the substitution of Eu3+ cations in Bi2MoO6 as a 
promising strategy to investigate photocatalytic applications. 
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