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A B S T R A C T   

The development and marked growth of chiral compounds is primarily due to the increased demand for phar-
maceutical applications, but it has been also extended to other sectors like agrochemicals, food, flavours, fra-
grances and material science. The pure enantiomers can present higher efficacy, potency and are considered safer 
than racemate or even achiral compounds. Enantiomerically pure compounds can be obtained by stereoselective 
synthesis and by post-synthesis separation through chiral separation methodologies. The use of solid polymeric 
membranes has become promising for enantiomeric separation, due to the low cost and energy consumption, 
continuous operability and variety of materials. This review aims to present the advances in research of chiral 
separation, using the enantioseparation technique based on solid polymeric membranes. Theoretical funda-
mentals and applications of solid polymeric enantioselective membranes in the last ten years is presented. The 
review also provides relevant information on the performance of this type of membranes for future applications 
and improvement in chiral separation field.   

1. Introduction 

Studies involving chiral compounds are increasingly attracting atten-
tion in academic research and industry, focusing mainly on their phar-
macological, metabolic and toxicological activities in living systems [1-3]. 
Enantiomers can have different pharmacodynamic and pharmacokinetic 
properties, due to their three-dimensionality and arrangement in space 
[4,5]. Chiral recognition occurs when the enantiomers of a chiral mole-
cule selectively interact with the biotarget, a common phenomenon in 
biological processes, leading enantiomers to present different biological 
responses (enantioselectivity) [6-9]. In this way, one enantiomer can 
produce the desired activity, while the other can be inactive or even result 
in unwanted effects that can be highly toxic [8-12]. On the other hand, 
due to the specificity in biological response of pure enantiomers, they can 
present higher efficacy and are considered safer than racemate or ev 
en achiral compounds, which have been boosted the market of chiral 
compounds. 

The driving factors preferring chiral chemicals increased the demand 
for enantiomerically pure compounds in the life sciences and other 
pharmaceutical applications along with agrochemicals industries, fla-
vors, fragrances interest and others in various developing markets. The 
pharmaceutical industry is the leader in chiral chemicals, comprising 
72% of the chiral industry market. The agrochemical industry is also 
responsible for the growth of this market, it is estimated that in 2023 this 
industry will grow around 14%. The chemical chiral flavors and fra-
grances segment also boosted the growth of the chiral compounds 
market [13,14]. The global chiral chemicals market was valued at USD 
50.762.5 million in 2018 an is expected to have a compound annual 
growth rate of 14% between 2019 and 2025 [14]. Worldwide, the 
market for chiral chemicals by 2024 is expected to be valued at over $ 
96.8 billion [13,14]. 

Thus, methodologies to achieve enantiomerically pure compounds are 
essential and need improvements. There is still a wide range of chiral 
compounds being commercialized as racemate due to the difficulties in 
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establishing a stereoselective synthesis [15] or a suitable enantiosepara-
tion process [16-18]. Enantiomers can be separated by several techniques, 
including capillary electrophoresis (CE), enantioselective liquid–liquid 
extraction (ELLE), diastereomeric crystallization (DC), liquid chroma-
tography (LC), supercritical fluid chromatography (SFC), simulated 
moving bed (SMB), gas chromatography (GC), counter-current chroma-
tography (CCC) and membranes (Fig. 1) [19]. 

DC or enantioselective precipitation process from the racemic solu-
tion, is a convenient and direct method that can be applied on a large 
scale, being widespread industrially [20,21]. However, it presented 
some disadvantages due to its limited flexibility, as it requires a 
conglomerate-forming racemate [22-24]. Chromatographic techniques 
are directly related to their high versatility in obtaining high enantio-
merically pure compounds, resulting from instrumental improvements 
as well as in the development of highly efficient chiral stationary phases 
(CSPs) [25-27]. LC is one of the most important techniques for prepar-
ative resolution of enantiomers [24,27-30]. Nevertheless, LC presents 
same disadvantages as the need of large amount of organic solvents, the 
high cost of the CSPs for preparative scale and the difficulty to use on a 
large scale [31]. SFC is also emerged as a highly efficient technique for 
chiral separations, being associated to the advantage of reduced use of 
organic solvents [32-35]; however, it has the same limitations of LC 
concerning the cost of the CSPs and the large scale applications [27]. 
Chiral solid membranes can be a valuable alternative to preparative LC 
and SFC for industrial production due the simplicity in operation, the 
reduce use of solvents, which is the requirement for more sustainable 
methodologies, allied with the lower cost when compared to SFC and LC. 

One strategy to reduce solvent use and obtain enantiomers on large 
scale involves SMB technology. Nevertheless, this technology requires 
more sophisticated concepts of continuous chromatography [36-38]. 
CCC, which is based on the liquid–liquid partition principle, is also used 
for preparative enantioseparation [27]. It has the advantages of low 
solvent consumption and cost, easy expansion, and complete recover-
ability. However, its major disadvantage is the low separation efficiency 
of some chiral selectors [39-41]. Currently, the use of GC with a CSP is 
very limited because this technique is used for volatile and thermostable 
compounds, and usually requires lengthy derivatization step [42,43]. 
ELLE is a technique that needs less solvent consumption than the chro-
matographic approaches mentioned above and can be applied continu-
ously in several scales. The applied technology is relatively inexpensive, 
in addition to obtaining high transport rates and high flexibility. How-
ever, the main disadvantage is that the selectivity achieved is relatively 

low, due to the limited number of theoretical plates that are required [44- 
48]. CE has the advantages of using low amounts of reagents and sam-
ples, and presents high efficiency, resolution and simplicity, since chiral 
columns are not necessary. However, the CE has a disadvantage con-
cerning its low sensitivity, due to the short optical path of detection, 
resulting from the small dimensions of the separation column [49-53]. 

Direct enantioselective adsorption by multifunctional materials, as 
well as membrane-based separation has attracted considerable attention 
in recent decades, as they are technically suitable for commercial ap-
plications [31,54-56]. They can provide high productivity with low 
emissions and energy use compared to alternative processes, such as 
crystallization and chromatography [10,56]. Membrane-assisted sepa-
ration method has appeared as a promising alternative for large-scale 
chiral separation. The first chiral separation by membrane was suc-
cessfully demonstrated by Peacock et al. [57], in 1980, which have 
elicited more researches on this separation technology. Commercial 
synthetic membranes are generally made of polymeric materials with 
different physicochemical characteristics. There are also membranes 
comprising inorganic materials, having a longer useful life and easy 
cleaning, but they are much more expensive than polymeric ones [58]. 
Stereoselective polymeric membranes have some advantages over other 
methods such as: low cost [59], continuous operation mode [60,61], 
large processing capacity [62] and, in most cases, processing at room 
temperature [63] and low energy consumption [64], due operational 
simplicity. The membrane operating units are modular and have smaller 
physical dimensions than conventional equipment, which guarantees a 
lower design cost, the membrane modules do not require intensive labor 
for the operation, which can be moved to more critical areas of opera-
tions. However, their successful applications are still restricted to 
enantioseparation at a small scale, mainly, for few pharmaceuticals and 
amino acids as exploratory projects. Nevertheless, tremendous efforts 
have been carried out to develop efficient chiral membranes to achieve 
enantiomers with high enantiomeric purity [27,65]. 

This review presents the theoretical background and applications 
involving polymeric membranes for enantiomeric separation and pro-
vide information on the performance of enantioselective membranes for 
future applications and development of chiral separation. 

2. Separation membranes 

A general definition of a membrane is an interphase that separates two 
phases and restricts the transport of various chemical species in a specific 

Fig. 1. Schematic of the enantioseparation techniques.  
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way [66]. This interface, depending on its chemical composition and 
physical structure, can be molecularly homogeneous or heterogeneous, 
containing pores or consisting of some form of layered structure [67]. 
Membranes can be classified into solid and liquid based on their physical 
nature [31,68]. A schematic representation of the principal types of 
membranes comprising different morphologies is presented in Fig. 2. 

2.1. Liquid membranes 

Liquid membranes are made up of two homogeneous miscible liquids 
(a feed solution and an acceptor solution), which are spatially separated 
by a third immiscible liquid, which acts as a membrane between the two 
liquids [10,25,69]. There are three basic types of liquid membranes: 
liquid emulsion membrane (ELM) [70,71], bulk liquid membrane (BLM) 
[72,73], and supported liquid membrane (SLM) [74,75]. The main 
disadvantage of the liquid membranes is the physicochemical instability 
of the carrier agent [67]. The advantages of liquid membranes over solid 
membranes are that molecular diffusion in the liquids, except in super- 
viscous ones, is faster than that in solids, and the transfer efficiency of 
the liquid membrane can be increased by means of swirl diffusion in 

some pertraction methods [76,77]. Despite the liquid membranes ad-
vantages, solid membranes are superior in the stability, durability and 
simplicity of the devices, being considered more suitable for enantio-
separation [71]. 

2.2. Solid membranes 

Solid membranes can be subdivided into organic (polymeric) and 
inorganic (ceramic, metal) membranes [62]. Unlike liquid membranes, 
solid membranes have good chemical, mechanical and thermal stability 
[65,78]. Solid membranes are characterized by parameters concerning 
their morphological nature and their transport properties. Accordingly, 
the solid polymeric membranes can be classified as dense or porous, and 
may be isotropic (symmetrical) or anisotropic (asymmetric) [58,67]. 

Anisotropic membranes consist of a thin polymeric film surface (skin- 
layer) containing pores with nanometric diameters, supported by a 
thicker porous layer with much larger diameters, on the order of microns. 
The polymeric film surface and its substructure can be formed in a single 
process or separately. In composite membranes, the thin film surface and 
the porous layer are generally made of different polymers. Isotropic 

Fig. 2. Schematic presentation of the different types of membrane morphology Adapted from Ref. [25,67].  
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membranes can be porous or dense. Fig. 2 shows the two forms for porous 
isotropic membrane, in one type the pore size along the cross section is 
monodisperse. In another type of membrane it has cylindrical pores of the 
same diameter on both surfaces, but their application is limited, due to 
the fact that they get easily fouled, reducing selectivity [67,79]. 

In order to transport the penetrant across the membrane, driving 
force must acting on it, i.e. a gradient of chemical potential that can be 
expressed in terms of pressure, concentration and/or electric potential 
gradient [80]. 

The solid membranes are therefore categorized according to their 
mechanisms. The type of resolution mechanism in solid polymeric 
membranes depends on the dominant transport process. Transport can 
occur by convective mechanism or by diffusion, depending on the type 
of driving force used and the morphology of the membrane [58]. In 
processes that employ porous membranes, the selective capacity is 
related to the size of the species present and the size of the membrane 
pores. For porous membranes, the transport of species across the 
membrane can occur by convective and diffusive processes. The selec-
tive capacity in processes that use dense membranes depends on the 
diffusion of species across the membrane and the affinity of different 
species for the membrane material, the first stage being of kinetic nature 
and the other stage of thermodynamic nature [58,62,67]. 

In short, in the dense membranes, the main mechanism is the solution- 
diffusion model. In porous (asymmetric) membranes, the predominant 
model is the flow through pores. In dense and defect-free membranes, the 
species will permeate through the free volumes available in the polymer 
matrix. These free volumes have molecular dimensions, which makes 
dense membranes the most suitable for separating gases and vapors. The 
solution-diffusion model is based on three steps: 1) the sorption of species 
present on the membrane surface, on the higher concentration/pressure 
side (feed); 2) the diffusion of species along the thickness of the mem-
brane, under the action of the potential gradient; 3) the desorption of 
species on the lower concentration/pressure side (permeate) [81]. In the 
solution diffusion mechanism, the flux through the polymer is propor-
tional to a chemical potential gradient. This solution-diffusion mechanism 
can be described for enantiomers by [82]: 

Pe = De.Se (1)  

where, P is the permeability, S the sorption coefficient and D the 
diffusion coefficient. The subscript “e” indicates the D or L enantiomer, 
respectively. 

The partition coefficient is defined as the ratio between the equi-
librium membrane concentration (Cm) and the concentration in the bulk 
liquid (Cl), according to the following equation: 

S=

Cm

Cl
(2) 

The basis of the solution-diffusion mechanism is diffusion, i.e., a 
mass transfer process due to the existence of a concentration gradient. In 
1855, Fick formulated his results with the equation (Fick’s law)[67]: 

Ji = − Di
dci

dx
(3)  

where Di is the diffusivity coefficient, Ji is the flux (g.cm− 2.s− 1) and dci/ 
dx is the concentration gradient of component i. 

In porous membranes, permeants are transported by pressure-driven 
convective flow through pores. The so-called pore-flow model can be 
described by Darcy’s law, according to the equation [67]: 

Ji = K’ci
dp
dx

(4)  

where dp/dx is the pressure gradient in the porous medium, ci is the 
concentration of component i and K is a coefficient that reflects the 
nature of the medium. Darcy’s law comprises pores in the range of 5–10 
Å in diameter. 

Separation occurs through interaction with the inner membrane 
surface, however, the transport is not an intrinsic property of the 
membrane material and permeability in porous membranes is not 
normalized by membrane thickness [10,62]. The transport mechanism 
of dense membranes is an intrinsic property of the membrane material, 
whereas in porous membranes it depends on morphology, in addition to 
the membrane material. 

Integral asymmetric membranes have two important characteristics 
that influence their permeation properties and selectivity for use in 
separation processes: the pores and/or surface defects, and the thin 
thickness of the surface layer. The transport mechanism in asymmetric 
membranes can be described by the Knudsen model, a pore flow model 
based on the mobility of the permeant and the average pore size [67,83]. 
The permeation rate of components through a membrane is inversely 
proportional to its thickness. Consequently, asymmetric membranes 
have higher permeability when compared to symmetric porous ones, 
since permeant transport is controlled by the dense surface layer. 

Unlike conventional membrane separation, the enantioseparation 
will only occur in a chiral environment, therefore, it is necessary to 
introduce chirality into the polymeric membrane, either by intrinsic 
chirality of the polymers, or by adding chiral selectors, which will be 
described below. 

2.3. Performance parameters of enantioseparation by solid membranes 

To report the chiral separation process in enantioselective mem-
branes, it is important to introduce membrane performance parameters 
for enantioseparation and verify which ones have proven to be effective 
for enantiomeric separations. The performance of membranes can be 
evaluated by permeating solutions of racemates, and it can be expressed 
by two more important parameters: permeability and selectivity [10,62]. 
For application on an industrial scale, membranes with high permeability 
and selectivity are expected [83]. 

The permeability is defined as the normalized flux in relation to the 
difference in concentration and thickness of the membrane. This 
parameter is, therefore, an intrinsic property of the membrane, being 
required by: 

P =
J.x

Ci − Cf
(5)  

where, P is the permeation coefficient, J is the flux, x is the membrane 
thickness and Ci and Cf refer to the feed phase and stripping phase 
concentrations, respectively. 

The flux of the enantiomers can be calculated by the following 
equation: 

J =
ΔC.V
Δt.A

(6)  

where, ΔC is the change in concentration, Δt is the permeation time, V is 
the volume and A is the effective membrane area. 

The selectivity of a membrane over a mixture is usually expressed by 
retention (R) or separation factor (α). The solute is partially or fully 
retained as solvent molecules pass through the membrane [62]. 

Retention is given by: 

R =
cf − cp

cf
= 1 −

cp

cf
(7)  

where, Cp and Cf are concentrations of solute in permeant and feed, 
respectively. The R-value ranges from 0% to 100% (complete solute 
retention; i.e. an “ideal” semi-permeable membrane). 

Membrane selectivity for racemates is usually expressed in terms of 
the α [84]. 

α =
cD

p /cL
p

cD
f /cL

f
(8) 
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If the concentrations on the feed side, cR
f and cS

f , are the same, the 
separation factor (α) can be calculated from the following equation: 

α = cD
p /cL

p (9)  

where, cR
p and cS

pare concentrations of D- and L-enantiomers in permeant. 
So, if the permeation rate of the D-enantiomer across the membrane 

is greater than that of the L-enantiomer, the separation factor is denoted 
as α(D/L); if the L-enantiomer permeates preferentially, then the sepa-
ration factor is given by α(L/D). If α(D/L) = α(L/D) = 1, no separation is 
achieved. 

The enantioselectivity of membranes is also expressed by the pref-
erential transport of one of the enantiomers over its analogue through 
membrane permeation and is calculated in terms of the percent enan-
tiomeric excess (e.e.) of the permeates. The e.e. value is defined as the 
ratio of the concentration difference and the sum of the concentration of 
both enantiomers in the separation phase [10,84]: 

e.e. =
cD

p − cL
p

cD
p + cL

p
× 100 (10) 

or 

e.e. =
cL

p − cD
p

cL
p + cD

p
× 100 (11)  

3. Chiral polymeric membranes for enantioseparation 

Enantioselective polymeric membranes allow a specific enantiomer 
to be adsorbed or diffused in a polymeric matrix [85-87]. They act as 
selective barriers in the resolution process and, preferably, transport an 
enantiomer due to the stereospecific interaction between it and the 
chiral recognition sites [88,89]. The chiral recognition occurs through 
several types of interactions, including van der Waals, hydrophobic, 
hydrogen bond, dipole–dipole, and steric effects [55]. The enantiose-
lectivity of the membrane occurs through chiral recognition sites, such 
as chiral side chains, chiral backbones, and chiral selectors immobilized 
on polymeric membranes [83,84]. A variety of chiral selectors have been 
used in polymeric membranes, including derivatives of tartaric acid 
[90], cyclodextrins [63,91,92], amino acids [93], DNA [94,95], bovine 
serum albumin (BSA)[95,96], Pirkle type selectors [97], among others 
[56,98]. Chiral selectors can be immobilized on the pore surface or in 
the polymeric matrix by impregnation [99,100], grafting [101-104], 
transesterification [105] or molecular imprinting [106-108]. 

Chiral polymeric membranes can also be obtained by polymerizing 
chiral monomers or use natural polymeric material [64,109]. Poly-
saccharides are the most used natural polymeric materials, as chitosan 
[110-113] and cellulose [111,114]. Sodium alginate [113,114], poly 
(substituted acetylene)[115], poly (amino acids) as polyglutamates 
[113,114,116], and also lipids, such as polymerized diacetylene lipo-
somes [117], among others, have also been used in membrane design 
and development. 

Enantioselective polymeric membranes can be divided into two 
categories: diffusion-selective membranes and sorption-selective mem-
branes [21,56]. 

Diffusion-selective membranes are usually made without adding a 
chiral selector, when the polymeric material is intrinsically chiral [118]. 
Chiral polymers normally bind to a reduced amount of enantiomers as 
they lack one-to-one interactions between the chiral recognition sites and 
enantiomers. The racemic penetrants can diffuse through the free volume 
between chains of the polymer matrix, reducing the effectiveness of the 
molecular interactions, what limits highly efficient chiral separation. The 
main disadvantage of these membranes is the proportionality of perme-
ability and selectivity which is generally inverse [82,113]. However, 
many intrinsically chiral polymeric materials are described for ena 
ntioseparation by membrane. For example, Miao et al. [63] reported a 

dopamine-modified polysulfone (PSf) membrane prepared via mussel- 
inspired chemistry, which was subjected to polymerization in situ on 
the membrane substrate, and β-cyclodextrin (β-CD) was used as a chiral 
selector incorporated in the surface of the membrane. The pore size 
decreased with the deposition of β-CD and the narrower pores hinder non- 
enantioselective diffusion and increase the enantioselectivity at the 
expense of lower permeability, obtaining a diffusion-selective membrane 
with high enantioselectivity and low permeability. The e.e. value of the 
membrane for tryptophan (Trp) was close to 3.2% with the feed solution 
of racemic Trp of 5 × 10− 5 mol/L and the operating pressure was 0.1 
MPa. [63]. There is a great difficulty in obtaining diffusion-selective 
membranes with high enantioselectivity and high permeability. To 
solve this problem, studies indicate that dissolution selectivity should be 
added to diffusion selectivity, i.e. pendent groups can be introduced into 
the chiral membrane, which can interact more effectively during perme-
ation, increasing the selectivity of dissolution [115,119]. Recently, Zang 
et al. [120] managed to simultaneously improve the permeability and 
selectivity of a chiral helical membrane of substituted poly (phenyl-
acetylene) synthesized with the introduction of aldehyde groups by 
deprotection of dioxolane groups. They obtained an increase in both 
enantioselectivity and permeability for the membrane containing alde-
hyde groups. The simultaneous increase in permeability and selectivity 
was due to the facilitated transport caused by the enantioselective reac-
tion of the aldehyde groups on the membrane with the amino groups in 
the permeant during permeation [120]. 

Regarding the sorption-selective membranes, they usually require a 
porous support and chiral selectors, having less diffusion-selective but 
show highly sorption-selective [121]. Unlike diffusion-selective mem-
branes, sorption-selective membranes have stronger binding affinity 
between chiral recognition sites and enantiomers, allowing simulta-
neously high flow and enantioselectivity [82,83]. 

Since the review paper by Higuchi et al. [56], in 2010, about poly-
meric membranes, many improvements and applications have been re-
ported concerning natural and synthetic polymers used in adsorption 
and membranes diffusion as well as the development of new 
molecularly-imprinted polymers (MIP). A review article by Moein 
[122], in 2021, presents an overview of the advances in the preparation 
and application of MIPs for the separation of chiral compounds in 
different analytical approaches, mainly in the sensor field. Some MIP 
applications based on membrane were also described [122]. Recently, 
Zhao Y. et al. [123] published a general review of the resolution of chiral 
molecules by chromatography and techniques based on membrane 
enantioseparation pointing out the intrinsic features of membrane-based 
for chiral resolution for large-scale industrial applications. However, 
since 2010 no systematic revision has been published about polymeric 
membranes for chiral separation. Herein, we summarized the develop-
ment, applications and results of chiral polymeric membrane in the last 
ten years (Table 1). 

3.1. Synthetic and natural polymers 

This topic summarizes some examples of recent work with synthetic 
and natural polymeric materials used in membranes for enantiosepara-
tion. Yuan et al. [114] developed solid chiral membranes comprising 
natural polymers of cellulose, sodium alginate and hydroxypropyl-β-CD 
to discriminate the enantiomers of mandelic acid or p-hydroxy phenyl-
glycine. When the feed concentrations solutions for the cellulose, so-
dium alginate, and hydroxypropyl-β-CD membranes were 0.5 mg/mL of 
mandelic acid, 0.8 mg/mL of p-hydroxy phenylglycine and 0.5 mg/mL 
of hydroxy phenylglycine the e.e. of 89.1 %, 42.6 % and 59.1 % were 
obtained, respectively. Higher concentrations of the racemates resulted 
in decreased enantioselectivity of the membrane. A mechanism for 
chiral selection of membranes in three stages, based on “adsorption - 
association – diffusion”, has been suggested [114]. 

In another study, Meng et al. [92] developed new membranes 
composed of L-glutamic-graphene oxide (Glu-GO), using cellulose 
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acetate membranes as a support layer, to evaluate the enantiosepa-
ration performance of the membranes for 3,4-dihydroxyphenylalanine 
(D,L-dopa). The Glu-GO membranes exhibit a great permselectivity for 
D,L-DOPA and the maximum selectivity was higher than 2.0. More 
recently, they managed to improve the enantioselectivity of the 
membranes using natural polymers based on polypeptides, reaching 
1–2 orders of magnitude compared to the common chiral separation 
membranes. They used poly (L-glutamic acid sodium), PLGA, on the 
surface of GO leaves, the combination of GO-based materials and 
polypeptides can offer unusual control in the selectivity and flux of the 
corresponding composite membranes, achieved by regulating the 
interlayer spacing between the GO sheets and achieving composite 
membranes of the facilitated transport with high flux and high selec-
tivity. The maximum α values was up to 2.8, which is higher than the 
membranes reported previously [92,124]. 

Takara et al. [110] prepared chiral membranes of chitosan by a 
technique of solvent casting/evaporation in order to study the enan-
tiosorption process of L- and D-tyrosine (Tyr) in aqueous solutions. From 
computational calculations, they were able to evaluate the affinity of the 
enantiomers for two adsorption regions in the polymeric matrix. It was 
found that the absorption of Tyr reduced the crystallinity of the mem-
branes and decreases the intercatenary spacing due to the rearrange-
ment of the chains [110]. 

It is important to emphasize that there are many studies that use the 
process of interfacial polymerization (IP) in enantioselective membranes 
through the incorporation of chiral selectors. The IP is a technique used 
for preparing thin-film composite (TFC) membranes, widely used in 

nanofiltration, forward and reverse osmosis [125-127]. Zhou et al. [128] 
produced an enantioselective TFC membrane by using this technique. A 
PSf membrane was produced by the wet phase inversion method and the 
chiral selector - CD was used to synthesize the selective dense layer 
(Fig. 3). For evaluation of the enantioselective membrane performance, 
the racemic Trp was used as a model. The membrane performance was 
evaluated in two different modes of operation, conducted by the con-
centration gradient and pressure gradient; enantioselectivity of 1.55 and 
0.6 were obtained, respectively. When the feed concentration was 0.1 
mmol/L, the highest enantioselectivity (α = 1.55) was achieved. The α 
values in both operating modes decreased with the concentration of 
racemic feed and increased with the CD content [128]. 

Gaálová et al. [129] produced membranes composed of three layers: a 
supporting layer composed of a commercial synthetic film (poly-
ethylene/polypropylene), a nanofiber, forming the porous layer, and a 
selective layer of the thin film membrane containing the chiral selector 
(S,S)-1,2-iaminocyclohexane, which was prepared by IP. The enantio-
selectivity of the membrane was demonstrated through sorption tests, in 
which they were soaked in an aqueous solution of racemic Trp. The 
enantioselectivity of the membrane was increasing with the % of the 
chiral selector (0% < 10% < 20%< 30%< 40% < 50%). The corre-
sponding final enantiomeric ratios were 50:50, 59:41, 70:30, 82:18, 91:9 
and 99:1, respectively. The preferential sorption of L-Trp from the feed 
underlined the crucial importance of the selector in the active layer to 
achieve chiral recognition of enantiomers. Due to the exclusive mem-
brane material, the retention of L-Trp in the membrane materials did not 
block the transport of D-Trp. In addition, an enantiomeric separation of 

Fig. 3. Schematic diagram of IP (Reprint permission from Ref.[128]).  
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the same model chiral drug was performed in by pertraction in diffusion 
cells. The result for the permeation was an excess of D-Trp in the 
permeate, where this excess was proportional to the amount of chiral 
selector in the membranes. Moreover, the presence of nanomaterial in 
the active layer assured the distribution of the selector in a part of the 
active layer, sufficient to achieve high enantioselectivity [129]. 

Another example of in situ IP, for development of a new chiral TFC 
polyamide membrane was reported by Ke et al. [91]. The diethylamino- 
beta-cyclodextrin monomer (EDA-β-CD) was used as chiral selector with 

trimesoyl chloride (TMC) to manufacture a TFC membrane on the 
commercial cellulose acetate membrane surface (Fig. 4). The enantio-
separation of chiral compounds such as warfarin, ibuprofen, nefopam, 
ketoprofen and Trp were evaluated. The solutions of 25 mg/L were used 
for permeation using the membrane microdevice with a constant flow 
rate of 0.1 mL/min. The e.e. was 8.09% for warfarin, 3.65% for 
ibuprofen and 27.2% for Trp. In addition, it was suggested that the 
membrane can be used in industrial production and it was stable over a 
wide pH range [91]. 

Fig. 4. Illustrations of molecular transport mechanism in the membranes for the enantioseparation of chiral drugs (Reprint permission from Ref. [91]).  

Fig. 5. Schematic diagram of the preparation process for a chiral composite membrane (Reprint permission from Ref. [130]).  
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Recently, Ke et al. [130] used the IP method to prepare chiral 
polyester composite membranes, using CD as a chiral selector, com-
mercial cellulose acetate membranes as support and TMC as a cross-
linking agent. It was used Trp as a chiral model for IP. For the evaluation 
of the enantiomeric resolution of the membrane a lab-scale filtration 
apparatus with constant flow rate was used, and the permeate solutions 
was quantified by LC. The compounds tested were warfarin and nefo-
pam, achieving e.e. values of 7.01 ± 0.41% and 6.74 ± 1.00%, respec-
tively (Fig. 5). The chiral recognition mechanism was demonstrated 
employing molecular modeling with AutoDock [130]. However, when 
comparing with a previous work, in which the polymer acetate cellulose 
was used and both comprise a chiral selector based on CD, it was 
possible to observe that a greater enantioselectivity was achieved for the 
same compound. Regarding warfarin, for the membrane composed of 
cellulose acetate the value of e.e. was 8.09% and for polyester composite 
membrane the value of e.e. was 7.01% [91,130]. 

In a study by Lu et al. [78], mixed-matrix membranes (MMMs) 
composed of CD-homochiral metal–organic framework (MOF) as a chi-
ral selector and polyethersulfone (PES) as a matrix were produced using 
the dry casting method. The racemate of 1-phenylethanol was used to 
evaluate the membranes enantioselectivity (Fig. 6). Racemic 1-phenyle-
thanol was dissolved in n-hexane, ethanol or methanol to prepare a 
0.008 mol/L feed solution. The enantioseparation of 1-phenylethanol 
was achieved with e.e. nearly 100% when non-polar n-hexane was the 
solvent. The enantioselectivity decreased with the permeation time with 
polar solvents such as methanol and ethanol. Although MMMs are 
highly attractive for continuous applications and efficient chiral reso-
lution, in several studies, a decline in membrane enantioselectivity has 
been observed with the permeation time, being a common problem for 
its practical applications [78]. One of the possible causes for the 
permeation decline may be due to membrane fouling, the main problem 
associated to membrane filtration processes. There are several studies 
that approach this topic. Recently, Tian et al. [61], verified the rela-
tionship between membrane fouling and chiral purification, through 
several operational parameters, such as: chiral concentration, chiral 
selector ratio for chiral concentrations, pH, feed medium, and cross flow 
rate (CFV) in extent of chiral separation. PES ultrafiltration membrane 
with BSA as chiral selector, and phenylalanine was used to evaluate the 
enantioseparation. They checked that for high concentrations of 
phenylalanine both the α and the flow decreased, compared to CFV 
which the α increased with increasing flow and decreased when flux 
decline. They suggested that there is a weak correlation between chiral 

purification and flow decline. Thus, in order to obtain a high enantio-
selectivity, other means are needed to improve the binding of the chiral 
selector with the chiral species, not just using the conventional method 
to attenuate membrane fouling [61]. 

3.2. Molecular imprinted 

The molecularly imprinted polymeric membranes are produced from 
a MIP, in which molecular recognition sites are created for a specific 
model molecule [131]. The model molecule can be covalently coupled 
to a monomer during polymerization, or they are mixed with functional 
monomers capable of interacting from intermolecular interactions with 
the printing molecules [56]. The physicochemical interactions between 
the polymer and the functional groups of the model molecule are 
memorized during molecular printing and after the crosslinking of the 
polymer, the printing molecules are removed from the polymer, leaving 
the recognition sites similar to the model molecules. The main advan-
tages of MIPs are their high affinity and selectivity for the model 
molecule, with relatively low production costs [131,132]. In the last 
years many investigations involving MIPs with different applications 
have been reported [122,133]. However, when we approach MIP 
membranes for chiral separation there are only few studies. 

One of the challenges for membrane separation processes is to obtain 
high flow and permeability. In 2010, Sueyoshi et al. [134] developed a 
molecularly imprinted nanofiber membranes using cellulose acetate as a 
support and N-benzyloxycarbonyl-D-glutamic acid (Z-D-Glu) or N-ben-
zyloxycarbonyl-L-glutamic acid (Z-L-Glu) as printing molecules, simul-
taneously applying a print alternative molecular and electrospray 
deposition. It was found that membranes produced from molecularly 
imprinted nanofiber increased both selectivity and flow, being a po-
tential to improve simultaneously flow and permeselectivity [134]. Af-
terwards, Sueyoshi et al. [135] produced molecularly imprinted 
membranes and molecularly imprinted nanofiber membranes using, this 
time, PSf with aldehyde (PSf-CHO-05 or PSf-CHO-10) as a support and 
used the same molecules as imprinting: Z-D-Glu and Z-L-Glu. It was 
verified that the membranes imprinted by the D-isomer, preferentially 
adsorbed the D-Glu isomer and the L- adsorbed the L-Glu isomer. As 
previously studied, it was found an increase in flow, without decreasing 
permselectivity, corroborating that molecularly imprinted nanofiber 
membranes have the potential to improve both flow and permselectivity 
(enantioselectivity). However, previously they achieved an enantiose-
lectivity of α = 1.4 in relation to this study, which was α = 1.2 [135]. 

Fig. 6. Schematic diagram of CD-MOF/PES MMMs (a) CD-MOF/PES MMM for selective transport of R-(+)-1-phenylethanol molecules from racemic mixture. (b) 3D 
structure of CD-MOF (Reprint permission from Ref. [78]). 
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In another study, Zhou et al. [136] described a green method for the 
preparation of a composite membrane using sodium alginate as a 
functional natural polymer with D-Trp surface-imprinted, using water as 
solvent and calcium chloride as crosslinking agent. The performance of 
the chiral separation of molecularly imprinted composite membrane 
was studied, and a high e.e. of the filtrate D/L-Trp (>99%) was obtained. 
The permeation flux of D-Trp increased slightly and the permeation flux 
of L-Trp decreased sharply in higher temperature, increasing the e.e. The 
method, besides being green and low cost, was good for the significant 
increase in e.e., compared to previous studies [136]. Afterwards, they 
applied the same green method, but used polyvinylidene fluoride 
(PVDF) membrane as a support, to achieve greater mechanical resis-
tance and permeation flow, when compared to the previously developed 
molecularly imprinted self-supported membrane. Highly effective chiral 
resolution of the permeation solution within a range of mild conditions, 
feed concentration lower than 0.5 mmol/L, and pH higher than 5.89, 
was obtained in pressure-driven permeation experiments. The e.e. 
increased sharply with increasing the thickness of sodium alginate 
functional polymer layer. The permeation flux of D-Trp when the 
thickness was 0.02 mm was higher than that of L-Trp, the e.e was 
99.13%. The obtained membrane was very stable at a temperature lower 
than 227 ◦C [137]. 

Gao B. et al. [107] proposed a MIP technique on the membrane 
surface using synchronized graft/crosslinking polymerization of mono-
mer. The aminated PSf membrane was used as substrate and L-aspartic 
acid (L-Asp) as a template. After the formation of an initiation system on 
the membrane surface, the grafted/crosslinked polymerization of the 
functional monomer (dimethylaminoethyl methacrylate) and the 
crosslinking agent (N, N′-methylenebisacrylamide) occurred, at the 
same time, L-Asp molecules were incorporated into crosslinked net-
works (Fig. 7). The molecularly imprinted membrane (L-Asp-MIM) 
showed a high flux and a strong mechanical resistance with aminated 
PSf membrane. L-Asp-MIM obtained an excellent chiral recognition ca-
pacity (α = 7.52) and in the permeation experiment of a racemate so-
lution of Asp, the e.e. value of the penetrating fluid reached 82% [107]. 

Li H. et al. [138] produced a membrane composed of ZrO2 and cel-
lulose acetate with the molecular imprinting technique and the (S)- 
(+)-mandelic acid was used as the template. It was observed that the 
chiral polymer coating on the Al2O3 channel film modified with ZrO2 
increased permselectivity and flow, compared to the traditional mem-
brane. Moreover, membranes with large pores can increase the cellulose 
acetate loading, thus increasing the sites for chiral recognition and 
leading to increased separation efficiency reaching an α value of 35 
[138]. This research group also used an Al2O3 nanochannel modified 
with ZrO2 and cellulose acetate with the molecular imprinting tech-
nique; however, the L-lactic acid was used as imprinted molecule. The 
enantioseparation of lactic acid was achieved with α = 8.7 [139]. 

Recently, Ying X. et al. [140], processed a molecularly imprinted 
chromogenic membrane using the technique of electrospinning. Poly-
vinyl alcohol (PVA) was used as substrate and the molecule p-hydrox-
ybenzene propanoic acid was the template, ninhydrin was used as a 
chromogenic agent to visualize the detection of the molecule- target L- 
Tyr. The authors found that the MIP membrane exhibited selectivity and 
specific adsorption capacity for L-Try. They also evaluated the influence 
of environmental factors such as reaction temperature, amount of 
ninhydrin and elution time [140]. 

A summary of the chiral polymeric membranes developed in the last 
ten years is shown in Table 1. The values of Flux (J), Permeability co-
efficient (P), Molar mobility (u), and the process for membrane prepa-
ration are also included, since the transport property of the polymeric 

membrane also depends on its morphology. Enantioselectivity is 
expressed in many studies by the α values and the enantiomeric purity 
by e.e. (Table 1). 

Among the polymeric membranes presented in this review, it is 
evident that composite membranes both the obtained by IP and phase 
inversion (asymmetric membranes), based on PSf, as used by Ingole 
(>94% e.e.) [145], Gogoi (98.86% e.e.) [162] and by Singh (α = 17) 
[146,147], among others, obtained a successful enantioseparation. 

Synthetic membranes based on PSf are widely used in separation 
processes due to their physicochemical characteristics, as they are 
thermoplastic polymers with high glass transition temperature, high 
thermal and mechanical stability, in addition to high chemical stability 
[164-166]. Of course, other types of synthetic and natural polymers that 
have good chemical stability, a good enantioseparation was also ach-
ieved. The enantioselectivity of polymeric-based membranes can be 
increase when combined with chiral porous materials such as organic 
metal structures (MOFs) and modified graphene or GO. Furthermore, 
new trends suggest that other porous materials such as covalent organic 
frameworks (COFs) and MMMs can increase enantioseparation and 
mechanical strength. 

4. Conclusions and future perspectives 

The application of membranes for preparative enantioseparation is 
still restricted to academic research toward to a few pharmaceuticals 
and amino acids but has been pointed out as a promising green meth-
odology for further industrial use. Polymeric membranes, natural or 
synthetic, are the most investigated type of membranes due to the easy 
access of polymeric materials, its relative low cost and easy operation. 

Similar to LC, the porosity and the type of the support great affect the 
efficiency of the enantioseparation, but the resolution power of the 
chiral selector is the primary for the success in the enantioseparation of 
the membranes. 

Regarding industrial application, membranes with high perme-
ability, mechanical strength and enantioselectivity are required. The 
polymeric-based membranes when combined with chiral porous mate-
rials such as MOFs or modified graphene and GO can achieve high 
enantioselectivity. The use of porous materials in polymeric-based 
membrane consists in a new advance of chiral membranes. The COFs 
and MMMs with inorganic structures increase both the membrane per-
formance and the mechanical strength as porous materials tends to in-
crease the membrane flux and the separation factor. However, the 
number of chiral porous structures is still limited. Thus, the design and 
creation of new chiral porous materials with controllable pore size and 
chirality are required for the development of chiral membranes. 

The MIP membranes have a high selectivity, but they do not have a 
wide selectivity like other types of membranes, in addition, in the pro-
cess of preparing membranes with molecular printing can present high 
limitation for industrial production. 

The predicted grow of chiral chemical market in pharmaceutical, 
agrochemicals, flavours and fragrances segments, among others, will 
demand the development and application of easy, low cost and envi-
ronmental friendly methodologies for large scale enantiomeric separa-
tion. In that sense, new technologies to produce large-area membranes 
combining the fragile chiral porous materials, with the robust and well- 
known polymeric materials are an urgent need. Therefore, feasible, 
sustainable and low-cost methodologies for enantioseparation in pre-
parative scale are transversal requirements to different field, from basic 
research to industry applications. 
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Table 1 
Chiral separation through polymeric membranes.  

Membrane polymera Processing method Separated 
substance 

Flux (J)/Permeability 
coefficient (P)/Molar mobility 
(u) (methodb) 

e.e. and/or α Ref. 

Polyethersulfone Dry-jet wet phase inversion 
process 

Tryptophan P(water) = 74.79–116.27 L.m− 2. 
bar− 1.h− 1 (UF) 

α = 5–7 [141] 

Acrylamide/EGDMA Molecular imprinting UDCA 
CDCA 

J = 3.5–9.5 mL.h− 1 α(UDCA) = 3.24 
α(CDCA) = 1.93 

[142] 

Cellulose acetate Molecular imprinting D-Glutamic acid u = 1.04×10− 9 –5.49×10− 10 mol. 
cm.cm2.J− 1.h− 1 

α(D/L) =

1.11–1.45 
[134] 

L-Glutamic acid u = 1.32×10− 9–3.81×10− 9 mol.cm. 
cm2.J− 1.h− 1 

α(L/D) =

1.07–1.44 
Cellulose Casting/solvent evaporation 

technique 
D,L-Mandelic Acid (UF) 90% e.e. [143] 

Poly (dimethylaminoethyl methacrylate) containing 
SiO2 particles 

Molecular imprinting D,L -Glutamic acid (Ad) α = 3.3 [144] 

Polysulfone containing chiral metal–Schiff base 
complexes 

Phase inversion method D- Lysine J = 78,23–62.14 L.m− 2.h− 1 (UF) > 94% e.e. [145] 

Polysulfone Interfacial polymerization D-Arginine P(water) = 374 L.m− 2.h (UF) α = 17 [146] 
Polysulfone Interfacial polymerization D- Lysine (NF) α = 17 [147] 
Sulfonated polyetherketone (SPEK) Phase inversion method Tryptophan J(L) = 1.04×10− 7 –8.3×10− 7 mol. 

cm− 2.s− 1 (FFIEF) 
α = 1.4–7.1 [148] 

Polysulfone composite membrane Interfacial polymerization Lysine (RO) α = 8 [149] 
Polysulfone nanofiber membrane Electrospray deposition D,L -Glutamic acid u = 5.02×10-9–6.87×10-9 mol.cm. 

cm2.J− 1.h− 1 
α (D/L) =

0.71–1.49 
α(L/D) =

0.67–1.41 

[150] 

Polysulfone Interfacial polymerization α-Amino acids (UF) α = 15–20 [151] 
Cellulose acetate Phase inversion method D, L-Tryptophan J(D) = 0.45×10− 7–8.5×10− 7 mmol. 

cm− 2.s− 1 

J(L) = 0.64×10− 7–8.4 ×10− 7 mmol. 
cm− 2.s− 1 

94% e.e.   
(conc. gradient)   

66% e.e 
(pressure)   

19% e.e.   
(electric field) 

[152] 

Polysulfone membrane and β-cyclodextrin 
glutaraldehyde crosslinked polysulfone membrane 

Phase inversion method D-Phenylalanine J = 49.23 L.m− 2.h− 1 and 44.3 L. 
m− 2.h− 1 (UF) 

>81% e.e. [153] 

D-Tryptophan J = 52.31 L.m− 2.h− 1 and 47.78 L. 
m− 2.h− 1 (UF) 

>49% e.e. 

Polysulfone-aldehyde derivatized 
nanofiber membranes 

Molecular imprinting D -Glutamic acid u = 6.64×10− 11–1.15×10− 9 mol. 
cm.cm2.J− 1.h− 1 

α(L/D) =

1.12–1.25 
[135] 

L -Glutamic acid u = 3.05×10− 11–2.20×10− 9 mol. 
cm.cm2.J− 1.h− 1 

α(D/L) =

1.16–1.20 
Chitin nanofiber membranes Electrospray deposition D,L -Glutamic acid J(D) = 2.23×10-9–2.67×10-9mol. 

cm.cm− 2.h− 1 (MS) 
α(D/L) = 1.10 [154] 

J(L) = 1.98×10-9–2.40×10-9mol.cm. 
cm− 2.h− 1 (MS) 

D,L -Phenylalanine J(D) = 1.61×10-9–2.27×10-9mol. 
cm.cm− 2.h− 1 (MS) 

α(D/L) = 1.16 

J(L) = 1.45×10-9–1.85×10-9mol.cm. 
cm− 2.h− 1 (MS) 

D,L -Lysine J(D) = 1.31×10-9–2.12×10-9mol. 
cm.cm− 2.h− 1 (MS) 

α(D/L) = 1.13 

J(L) = 1.11×10-9–2.02×10-9mol.cm. 
cm− 2.h− 1 (MS) 

Polytetrafluoroethelene (PTFE) Commercial membrane D,L-lactic acid J(D) = 0.0015 mol.cm− 2.min− 1 (F) 
(MS) 

α(L/D) = 4.43 [155] 

J(L) = 0.0066 mol.cm− 2.min− 1(F) 
(MS) 

Polysulfone composite membrane Phase inversion method/ 
Interfacial polymerization 

Lysine J = 8.43–12.00 g.m− 2.h− 1 (UF) α(D/L) = 7–21 [156] 
Asparagine J = 12.1–16.75 g.m− 2.h− 1 (UF) α(D/L) = 3.8–5.2 

Polyimide Nanochannel by ion track- 
etching technique 

Tryptophan (BN) – [157] 

(+)-PIM-CN membrane Casting/solvent evaporation 
technique 

(R,S)-Mandelic 
acid 

P = 0.07×103 g.m.m− 2.h α = 1.92 [64] 

(R,S)-Binol P = 0.019×103 g.m.m− 2.h α = 3.3 
TTSBI P = 1.65×103 g.m.m− 2.h α = 14.4 

(+)-PIM-COOH membrane Casting/solvent evaporation 
technique 

Fmoc-Phe P = 0.073×103 g.m.m− 2.h α = 7 [64] 

Terpolymer P(AN-AA-AAm) Wet phase inversion method/ 
Molecular imprinting 

Arginine 5.38– 12.76 g.m− 2.h− 1 (UF) α(D/L) = 5.56 [106] 
Asparagine 7.38–20.13 g.m− 2.h− 1 (UF) 

Sodium alginate Molecular imprinting Tryptophan J = 8.0×10-5 mol.m− 2.h− 1 >99% e.e. [136] 
Cellulose Casting/solvent evaporation 

technique 
D,L-Mandelic acid (UF) 80.9% e.e. [114] 

Sodium alginate (UF) 16.6% e.e. 

(continued on next page) 
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Table 1 (continued ) 

Membrane polymera Processing method Separated 
substance 

Flux (J)/Permeability 
coefficient (P)/Molar mobility 
(u) (methodb) 

e.e. and/or α Ref. 

Casting/solvent evaporation 
technique 

p-Hydroxy 
phenylglycine 

Hydroxypropyl-β-cyclodextrin/ Polysulfone 
membrane 

Interfacial polymerization p-Hydroxy 
phenylglycine 

(UF) 23.2% e.e. 

Cellulose acetate membrane/ L-Glutamic acid-GO Vacuum filtration method L-DOPA J(L) = 10.21 nmol.cm− 2⋅h− 1 α = 2.05 [92] 
D-DOPA J(D) = 21.01 nmol.cm− 2⋅h− 1 

Polysulfone membranes/ polydopamine/ 
β-cyclodextrin 

Mussel-inspired chemistry Tryptophan P(water) = 24.0 L.m− 2.h− 1.bar− 1 

(UF) 
3.2% e.e. [63] 

Sodium alginate/Polyvinylidene fluoride (PVDF) 
membrane 

Molecular imprinting D, L-Tryptophan J(D) = 7.49×10-5 mol.m− 2.h− 1 

J(L) = 6.06×10-7 mol.m− 2.h− 1 
> 98% e.e. [137] 

Polyvinylidene fluoride (PVDF) Molecular imprinting Amlodipine 
besylate 

(CF) α = 1.98 [158] 

Poly(L-Glutamic acid sodium)-GO Vacuum filtration method L-DOPA J(L) = 6 nmol.cm− 2⋅h− 1 

P(L) = 1.5 × 10-4 cm2.h 
α = 2.8 [124] 

D-DOPA J(D) = 17 nmol.cm− 2⋅h− 1 

P(D) = 3.7 × 10-3 cm2.h 
Cellulose acetate membrane/GO-IL-Glu Vacuum filtration method L-DOPA J(L) = 8 nmol.cm− 2⋅h− 1 

P(L) = 1.5 × 10-4 cm2.h 
α = 3.13 [159] 

D-DOPA J(D) = 25 nmol.cm− 2⋅h− 1 

P(D) = 2.9 × 10-2 cm2.h 
Cellulose acetate composite membrane Molecular imprinting D,L-Lactic acid J = 0.070 mg.cm− 2.min− 1 α = 8.7 

79% e.e. 
[139] 

Cellulose acetate composite membrane Molecular imprinting (R,S)-Malic acid J = 0.1597 mg.cm− 2.min− 1 α = 35 
94.5% e.e. 

[138] 

Chiral membranes of chitosan Casting/solvent evaporation 
technique 

Tyrosine (Ad) 15–68 % e.e. [110] 

MOF/Polyethersulfone MMM Casting/solvent evaporation 
technique 

1-Phenylethanol J = 25.21×10− 5– 42.02×10− 5 mol. 
m− 2⋅h− 1 

100% e.e. [160] 

CD-COF/Polyethersulfone MMM Phase-inversion method D, L-Histidine J(L) = 1.04 μM.cm− 2.h− 1 

J(D) = 0 μM.cm− 2.h− 1 
R(L)/R(D) = 34.0 [161] 

Polyethylene/polypropylene composite membranes Interfacial polymerization D, L-Tryptophan J = 3.25–0.07 mmol.m− 2⋅h− 1 (P) 99% [129] 
Nanocomposite polysulfone membrane Phase inversion method Tyrosine J = 3×10− 6 − 5.9×10− 4 mmol. 

m− 2⋅h− 1 
98.86% e.e. [162] 

Composite cellulose acetate membrane Interfacial polymerization Warfarin J(water) = 35.7 L.m− 2⋅h− 1 8.09 % e.e. [91] 
Ibuprofen 3.65 % e.e. 
Tryptophan 27.2% e.e. 

Chiral-functionalized PSEBS membrane Casting/solvent evaporation 
technique 

Ibuprofen (S) peak ratio(D/L) =

43.7:56.3 
[163] 

Tryptophan peak ratio(R/S) =

60:40 
Polysulfone Wet phase inversion/ 

Interfacial polymerization 
D, L-Tryptophan J(water) = 4.4 LMH/MPa 

J(D) = 17.48–33.50 µmol.m− 2.h− 1 

J(L) = 20.10–51.62 µmol.m− 2.h− 1 

α = 1.55  
(conc. gradient)  

α = 0.60 
(pressure) 

[128] 

Polyester composite membrane Interfacial polymerization (RS)-Warfarin (F) 7.01 ± 0.41% e. 
e. 

[130] 

(RS)-Nefopam 6.74 ± 1.00% e. 
e. 

CD-MOF/Polyethersulfone MMM Dry casting technique R-(+)-1- 
Phenylethanol 
S-(-)-1- 
Phenylethanol 

J(hexane) = 2.48×10-3 mol.m− 2.h− 1 

J(ethanol) = 3.57×10-3 mol.m− 2.h− 1 
100 % e.e. [78]  

a Ursodeoxycholic acid (UDCA), Chenodeoxycholic acid (CDCA), Ethylene glycol dimethacrylate (EGDMA), Amphiphilic polymer conetworks (APCN), Polymers of 
intrinsic microporosity (PIMs), 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane (TTSBI), N-(9-fluorenylmethoxycarbonyl)phenylalanine (Fmoc-Phe), 
3,4-dihydroxyphenylalanine (DOPA), Polyimide (PI), Terpolymer (Acrylamide (AAm) acrylic acid (AA) acrylonitrile (AN)) (P(AN-AA-AAm)), Graphene oxide (GO), 
Ionic liquid (IL), L-glutamic acid (Glu), polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (PSEBS), Cyclodextrin (CD), Homochiral metal–organic 
framework (MOF), Covalent organic frameworks (COFs), Mixed-matrix membranes (MMM). 

b Method; Filtration process (F), Ultrafiltration (UF), Adsorption (Ad), Nanofiltration (NF), Ion-exchange membrane partitioned free flow isoelectric focusing 
(FFIEF), reverse osmosis (RO), Multi-stage separation (MS), Biomimetic single nanochannel (BN), Diffusion (D), Cross-flow filtration (CF), Pertraction (P), Sorption (S). 
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Luisa Marina, Chiral capillary electrophoresis, TrAC - Trends Anal. Chem. 124 
(2020) 115807, https://doi.org/10.1016/j.trac.2020.115807. 
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[64] Xilun Weng, José E. Baez, Mariya Khiterer, Madelene Y. Hoe, Zongbi Bao, 
Kenneth J. Shea, Chiral Polymers of Intrinsic Microporosity: Selective Membrane 
Permeation of Enantiomers, Angew. Chemie - Int. Ed. 54 (38) (2015) 
11214–11218, https://doi.org/10.1002/anie.201504934. 

[65] T. Liu, Z. Li, J. Wang, J. Chen, M. Guan, H. Qiu, Solid membranes for chiral 
separation : A review, Chem. Eng. J. 410 (2021), 128247, https://doi.org/ 
10.1016/j.cej.2020.128247. 

[66] H. Strathmann, Synthetic membranes and their preparation, in: P.M. Bungay, H. 
K. Lonsdale, M.N. Pinho (Eds.), Synth. Membr. Sci. Eng. Appl., Springer 
Netherlands, Dordrecht, 1986: pp. 1–37. https://doi.org/10.1007/978-94-009- 
4712-2. 

[67] R.W. Baker, Membrane technology and applications, 2nd ed., Jhon Wiley & Sons 
Ltd, Menlo Park, California, 2000. 

[68] Carlos A.M. Afonso, João G. Crespo, Recent advances in chiral resolution through 
membrane-based approaches, Angew. Chem. Int. Ed. 43 (40) (2004) 5293–5295, 
https://doi.org/10.1002/anie.200460037. 

[69] William H. Pirkle, Elizabeth M. Doherty, Enantioselective transport through a 
silicone-supported liquid membrane, J. Am. Chem. Soc. 111 (11) (1989) 
4113–4114, https://doi.org/10.1021/ja00193a060. 

[70] P.J. Pickering, J.B. Chaudhuri, Enantioselective extraction of (D)-phenylalanine 
from racemic (D/L)-phenylalanine using chiral emulsion liquid membranes, 
J. Memb. Sci. 127 (1997) 115–130, https://doi.org/10.1016/S0376-7388(96) 
00255-4. 

[71] P.J. Pickering, J.B. Chaudhuri, Emulsion liquid membranes for chiral separations: 
Selective extraction of rac-phenylalanine enantiomers, Chirality 9 (1997) 
261–267, https://doi.org/10.1002/(SICI)1520-636X(1997)9:3<261::AID- 
CHIR10>3.0.CO;2-L. 

[72] Henning M. Krieg, Jeanette Lotter, Klaas Keizer, Jaco C. Breytenbach, Enrichment 
of chlorthalidone enantiomers by an aqueous bulk liquid membrane containing 
β-cyclodextrin, J. Memb. Sci. 167 (1) (2000) 33–45, https://doi.org/10.1016/ 
S0376-7388(99)00274-4. 

[73] J. Ramkumar, S. Chandramouleeswaran, A Perceptive on Bulk Liquid Membrane: 
A Brief Review, Indian J. Adv. Chem. Sci. 3 (4) (2015) 293–298. http://www. 
ijacskros.com/artcles/IJACS-M156.pdf. 

[74] Eijiro Miyako, Tatsuo Maruyama, Noriho Kamiya, Masahiro Goto, Highly 
enantioselective separation using a supported liquid membrane encapsulating 
surfactant-enzyme complex, J. Am. Chem. Soc. 126 (28) (2004) 8622–8623, 
https://doi.org/10.1021/ja049378d. 

[75] E. Miyako, T. Maruyama, N. Kamiya, M. Goto, Enzyme-facilitated 
enantioselective transport of (S)-ibuprofen through a supported liquid membrane 
based on ionic liquids, Chem. Commun. 3 (2003) 2926–2927, https://doi.org/ 
10.1039/b310990a. 

[76] S. Robl, L. Gou, A. Gere, M. Sordo, H. Lorenz, A. Mayer, C. Pauls, K. Leonhard, 
A. Bardow, A. Seidel-Morgenstern, K. Schaber, Chiral separation by combining 
pertraction and preferential crystallization, Chem. Eng. Process. Process Intensif. 
67 (2013) 80–88, https://doi.org/10.1016/j.cep.2012.09.002. 

[77] R. Grant, Membrane Separations Technology - Principles and Applications, 
Elsevier. 4 (4) (1989) 483–503, https://doi.org/10.1080/10426918908956311. 

[78] Yizhihao Lu, Jun Yong Chan, Huacheng Zhang, Xingya Li, Yada Nolvachai, Philip 
J. Marriott, Xiwang Zhang, George P. Simon, Mark M. Banaszak Holl, 
Huanting Wang, Cyclodextrin metal-organic framework-polymer composite 
membranes towards ultimate and stable enantioselectivity, J. Memb. Sci. 620 
(2021) 118956, https://doi.org/10.1016/j.memsci.2020.118956. 

[79] S.I. Voicu, Pharmaceutical Applications of Polymeric Membranes, Handb. Polym, 
Pharm. Technol. 2 (2015) 173–194, https://doi.org/10.1002/9781119041412. 
ch7. 

[80] W.J. Koros, S.K. Burgess, Z. Chen, Polymer Transport Properties (2015), https:// 
doi.org/10.1002/0471440264.pst376.pub2. 

[81] T. Sabu, W. Runcy, K.S. Anil, C.G. Soney, in: Transport Properties of Polymeric 
Membranes, Elsevier, 2018, https://doi.org/10.1016/C2015-0-06823-X. 

[82] E.M. Van Der Ent, K. Van’t Riet, J.T.F. Keurentjes, A. Van Der Padt, Design 
criteria for dense permeation-selective membranes for enantiomer separations, 
J. Memb. Sci. 185 (2001) 207–221, https://doi.org/10.1016/S0376-7388(00) 
00647-5. 

[83] R. Xie, L.Y. Chu, J.G. Deng, Membranes and membrane processes for chiral 
resolution, Chem. Soc. Rev. 37 (2008) 1243–1263, https://doi.org/10.1039/ 
b713350b. 

[84] E.M.V. Hoek, V.V. Tarabara, M. Yoshikawa, A. Higuchi, Enantioselective 
Membranes, Encycl. Membr, Sci. Technol. (2013), https://doi.org/10.1002/ 
9781118522318.emst131. 

[85] Toshiki Aoki, Ken-ichi Shinohara, Takashi Kaneko, Eizo Oikawa, Enantioselective 
permeation of various racemates through an optically active poly{1-[dimethyl 
(10-pinanyl)silyl]-1-propyne} membrane, Macromolecules 29 (12) (1996) 
4192–4198, https://doi.org/10.1021/ma9517254. 

[86] Swapnali Hazarika, Enantioselective permeation of racemic alcohol through 
polymeric membrane, J. Memb. Sci. 310 (1-2) (2008) 174–183, https://doi.org/ 
10.1016/j.memsci.2007.10.055. 

[87] Toshiki Aoki, Akira Maruyama, Ken-ichi Shinohara, Eizo Oikawa, Optical 
Resolution by Use of Surface-Modified Poly(methyl methacrylate) Membrane 
Containing (–)-Oligo{methyl(10-pinanyl)siloxane}, Polym. J. 27 (5) (1995) 
547–550, https://doi.org/10.1295/polymj.27.547. 

[88] Mathias Ulbricht, Membrane separations using molecularly imprinted polymers, 
J. Chromatogr. B Anal. Technol. Biomed, Life Sci. 804 (1) (2004) 113–125, 
https://doi.org/10.1016/j.jchromb.2004.02.007. 
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