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Among the species of plants present in the Atlantic Forest, the jussara (Euterpe edulis
Mart.) stands out for the contents of bioactive compounds present in its composition.
Fermentation processes can be essential in converting bioproducts and bioactive
compounds, improving their biological properties. In addition, the improvement of
procedures for the maintenance of the features of bioactive compounds has been a
research focus in recent years, and the nanotechnology features that can potentially solve
this issue have been highlighted among the most reviewed paths. The present work
focused on tailoring nanostructures applying polyethylene oxide, assembling fermented
jussara pulp nanofibers, and assessing their characteristics. The results revealed the
formation of fermented jussara nanofibers with a diameter of 101.2 ± 26.2 nm. Also, the
obtained results allow us to state that it is possible to maintain or even increase the
antioxidant activity of anthocyanins and their metabolites after fermentation processes.
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INTRODUCTION

Bioactive compounds such as anthocyanins are widely studied for their complexity, as they have
potential as natural pigments and a remarkable ability to promote favorable effects on human health
(Braga, Mesquita et al., 2018; Braga, Murador et al., 2018; Kang et al., 2020). The antioxidant capacity
is the most frequently reported biological effect, as these natural pigments perform as free radical
scavengers and are commonly associated with the avoidance of non-transmissible chronic diseases
(Jayawardena et al., 2015; Nemś et al., 2015; Skrovankova et al., 2015; Jurikova et al., 2016; Braga,
Mesquita et al., 2018; Braga, Rocha et al., 2018; Capanoglu et al., 2018; Bai et al., 2019; Shopska et al.,
2021). Nonetheless, despite their beneficial assets, anthocyanins’ efficiency depends on their stability
and bioavailability in the food matrix, and these bioactive compounds are susceptible to pH,
temperature, oxygen, and light conditions (Murador et al., 2014; Murador et al., 2016; Biazotto et al.,
2019).

During the digestion process, several steps are taken by the food after their ingestion, and these
changes can affect the properties and characteristics of bioactive compounds. Besides that, the
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microbiota composition differs between individuals, and its
modulation is closely linked to several physiological
mechanisms. This modulation can be performed by probiotic
microorganisms present or added to food and composing the
human intestinal microbiota (Round and Mazmanian, 2009;
Guergoletto et al., 2016; Zhang et al., 2016; Braga, Mesquita
et al., 2018; Yan et al., 2018; Li et al., 2019; Santamarina et al.,
2019; Yan et al., 2021). Intestinal bacteria are known to be
equipped with a wide variety of enzymes capable of
hydrolyzing various glucosides. Microorganisms of the
Lactobacillus genus are predominant components of the
human intestinal microbiota; some strains can produce the β-
glucosidase enzyme, which contributes to the hydrolysis of β-
glucosides from foods rich in anthocyanins (Braga, Murador
et al., 2018; Braga, Mesquita et al., 2018).

Strategies to protect the beneficial effects of bioactive
compounds such as anthocyanins during the metabolism of
food sources are of great interest in two main scenarios. The
first concerns food processing, in which anthocyanins can be
applied as a natural pigment, and the second when food sources
are consumed, and these compounds are expected to be preserved
during the natural digestion process (Jayawardena et al., 2015;
Kosińska-Cagnazzo et al., 2015; Egger et al., 2016; Wu et al.,
2017). An excellent source of this pigment is the jussara fruit,
which also stands out concerning its nutritional composition
among the more than 20,000 species of plants native to the
Atlantic Forest (Braga, Mesquita et al., 2018; Bernardes et al.,
2019; Biazotto et al., 2019).

One way to promote the deglycosylation of anthocyanins is by
using a fermentation process in which enzymes such as β-
glucosidase are produced, which modify the profile of
anthocyanins considering their action in the hydrolysis of β-
glucosides, thus increasing the bioaccessibility and bioavailability
of this pigment (Faria et al., 2014; Fernandes et al., 2014; Braga,
Mesquita et al., 2018).

Another way to protect the beneficial effects of jussara
anthocyanins is nanotechnology, mainly the electrospun
technique. This technique is highly recommended to produce
nanostructures involving bioactive compounds, as it is versatile, it
does not require extreme temperature conditions and chemical
mixtures, and its operation occurs in a closed system, which
allows configuring their parameters according to the desired
objective and avoid the influence of the outside environment.
Besides, it is possible to produce nanoparticles (electrospraying)
and nanofibers (NFs) (electrospinning) (Frenot and Chronakis,
2003; Wen et al., 2017; Alehosseini et al., 2018). Several works
have presented color and bioactive action maintenance capability
by incorporating bioactive compounds into nanostructures
(Bhushani and Anandharamakrishnan, 2014; Reksamunandar
et al., 2017; Horuz and Belibağlı, 2019; Giaconia et al., 2020;
Ramos et al., 2020; Ramos et al., 2021).

In addition, the polymer solution, such as polyethylene oxide
(PEO), added to the bioactive compound, a step before
nanoencapsulation, allows it to use several products (Uyar and
Besenbacher, 2009; Razavi et al., 2015; Peinado et al., 2016;
Nooeaid et al., 2017; Ramos et al., 2020) by promoting the
protection and thermal stability to the added compounds, thus

ensuring maintenance of the functional properties, even after
going through the in vitro digestion process (Braga et al., 2016;
Hoseyni et al., 2020). Given the vast literature on nanotechnology
and bioactive compounds, there are still no studies with the PEO
polymer involving jussara pulp. This polymer is water-soluble,
certified by the Food and Drug Administration (FDA) as
Generally Recognized as Safe (GRAS) (FDA UNII 16P9295IIL)
(Stie et al., 2019), which enables its use in different areas of the
industry, and the present research group has studied its
application.

The present work aims to study the assembly of fermented
jussara pulp (FJP)/PEO NFs using the electrospinning technique
and evaluate their characteristics. Additionally, the study aims to
determine the antioxidant activity (AA) and bioaccessibility of
the FJP and its polymeric solution with PEO, a step that precedes
the NF fabrication, to access the protective role of the polymer on
the bioactive compounds present in the pulp.

MATERIALS AND METHODS

Jussara Pulp Fermentation
Jussara pulp was obtained directly from producers in the State of
São Paulo and sent to the Laboratory of Bioactive Compounds in
Food at Federal University of São Paulo. Jussara fermented pulp
was obtained according to Braga, Mesquita et al. (2018); the fruit
constituted the main nutritional base of the culture medium (20%
of pulp) added to glucose (10%). The pH was adjusted to 5.6, and
the volume of 200 ml of culture medium was distributed in 500-
ml Erlenmeyer flasks and heat-treated in flowing steam at 100°C/
13 min to maintain the bioactive compounds. Fermentation was
carried out using Lactobacillus deubruekii grown in MRS broth
using 250-ml Erlenmeyer flasks containing 50 ml of medium.
Incubation conditions were 28°C, 100 rpm for 48 h. Optical
density was standardized at 0.500 in absorbance at 600 nm by
spectrophotometry. The inoculum was standardized at 2% (v/v).
After 48 h of cultivation, the anthocyanins were determined
(Braga, Mesquita et al., 2018). After the fermentation process,
the FJP was centrifuged to remove the solid material, and the
supernatant was lyophilized; the resultant powder was used in the
following steps.

Proximal Composition of Jussara Before
and After the Fermentation Process
The samples of jussara before and after the fermentation process
were evaluated in triplicate according to the Association of
Official Agricultural Chemists methodology (AOAC, 2005).
The fat contents were determined by the Rose–Gottlieb
method. Total solids contents were determined by drying the
sample in a vacuum oven at 70°C for 24 h. Protein analyzes were
performed based on the determination of nitrogen by the micro-
Kjeldahl method. The protein content was calculated by
multiplying the nitrogen value by 6.25. The incineration of the
sample determined the ashes in muffle at 550°C. The
carbohydrate content was calculated by the difference between
the total solids and the sum of the fat, protein, moisture, and ash
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contents. The enzymatic–gravimetric method 991.43 (AOAC,
2005) was used for fiber determination, which was performed
in quadruplicate and using Sigma-Aldrich reagents and Total
Dietary Fiber Assay Kit (Megazyme brand). The pH values were
measured using a digital potentiometer.

Phenolic Compounds Determination
The phenolic compounds were extracted from jussara pulp before
and after fermentation with 100 ml of methanol/water (8:2 v/v)
by agitation with a magnetic homogenizer for 20 min (Silva et al.,
2014). The extract was used to determine total phenolic contents
by the Folin–Ciocalteu method (Singleton & Rossi, 1965); the
concentration was expressed in milligrams of gallic acid
equivalents (GAE)/100 g of sample; the analyses were
conducted in triplicate.

Polymeric Solutions Preparation
The polymeric solution with FJP8 was elaborated using PEO
(900,000 g moL−1, Sigma Aldrich, St. Louis, MO, USA) 8 and 50%
FJP with acetate buffer, according to Ramos et al. (2021), with
some modifications. This mixture was homogenized in a
magnetic stirrer for 14 h, and furthermore, it was studied in
bioaccessibility and AA. The polymeric solution with only PEO
8% was used in the electrospinning process, as the coaxial mode
was used (Ramos et al., 2021).

Bioaccessibility
Fermented jussara and the polymeric solutions using PEO 8%, in
triplicate, were submitted to an in vitro simulated digestion model
according to Mackie and Rigby (2015). Briefly, 5 g of each sample
was homogenized with 10 ml of basal salt solution (NaCl:
120 mol/L, CaCl2: 6 mmol/L, and KCl: 5 mmol/L). The oral
phase was started with 6 ml of a solution of artificial saliva
containing 106 u/ml of α-amylase (Sigma A3176), followed by
incubation at 37°C, 10 min in an orbital shaker (150 rpm).
Afterward, the pH was adjusted to 2.5 with HCl 1 M followed
by 2 ml of pepsin (Sigma P7000; 50,000 units/ml in HCl
100 mM), the total volume was adjusted to 40 ml, and the
solution was incubated for 1 h, 37°C, 150 rpm to perform the
gastric phase. Next, the intestinal step was prepared, and the pH
was adjusted to 6.0 with 1-M NaHCO3 and a porcine and ovine
bile solution (3 ml; Sigma B8381; 40 mg/ml in 100-mM
NaHCO3); 4,000 u/ml of porcine pancreatin (Sigma P1750)
and 1,000 u/ml of lipase from porcine pancreas (Sigma®
L3126) were added to the solution, and incubation for 2 h at
37°C was performed and pH adjusted to 6.5 in 50 ml. After the
completed in vitro digestion, the solution was centrifuged at
6,000 rpm, 60 min at 4°C. The bioaccessible anthocyanins were
present in the supernatant.

High-Performance Liquid Chromatography
Analysis of the Anthocyanins
Anthocyanins were extracted from the samples (2 g) and solution
of FJP and PEO 8% (FJP8), using 75 ml of 0.5% HCl in methanol.
The mixture was filtered and concentrated in a rotary evaporator
(T < 38 C). The extracts were diluted in water containing 5%

formic acid/methanol (85:15, v/v) immediately before high-
performance liquid chromatography analysis. The anthocyanin
separation and identification were conducted as presented by De
Rosso and Mercadante (2007). The anthocyanins were quantified
using a high-performance liquid chromatography–diode array
detector using seven-point analytical curves of cyanidin 3-
glucoside (5–125 μg ml−1) and cyanidin 3-rutinoside
(10–200 μg ml−1), r2 = 0.998; the limit of detection was
0.05 mg ml−1, and the limit of quantification was 0.1 mg ml−1.
The concentration was expressed in micrograms of cyanidin 3-
glucoside.ml−1 and/or micrograms of cyanidin 3-rutinoside.ml−1.
The percentage of anthocyanin content relative to the results
found before in vitro digestion, called remain (%), was calculated
considering the final and initial values.

Antioxidant Activity
Extracts were prepared from in natura and FJP and from the
polymeric solution 8% of PEO, both before and after each step of
the in vitro digestion, by adding 100 ml of 80% cold acetone to the
samples by agitation with amagnetic homogenizer for 15 min; the
mixture was filtered, and the solids were washed twice with an
additional 100 ml of 80% acetone and then concentrated in a
rotary evaporator (T < 40°C). The in natura jussara pulp was
considered the control solution for future discussion. The AAwas
determined by two antiradical assays; the first one was against the
ABTS+ radical, measured by adding an acetone/water extract
(30 μl) to a diluted solution of ABTS+ (7 mM). The solution was
homogenized, and after 6 min, the absorbance was read at 734 nm
and compared with a prepared Trolox standard curve (Re et al.,
1999). The results were expressed as micromole of Trolox
equivalent per gram of sample. The second was against the
peroxyl radical (ROO•), determined by the oxygen radical
absorbance capacity ORAC assay (Rodrigues et al., 2012). The
ROO• was produced by thermodecomposition of 2,2’-azobis(2-
amidinopropane) dihydrochloride at 37°C. The experiment was
performed in a 96-well microplate containing fluorescein (61 μM)
prepared in phosphate buffer 75 mM, pH 7.4, 2,2’-Azobis(2-
amidinopropane) dihydrochloride solution (19 mM) in
phosphate buffer, hydrophilic extract in three different
dilutions (100, 500, and 1,000 times) in phosphate buffer, or
Trolox (50 μM) in phosphate buffer. The results were expressed
as micromole of Trolox equivalent per gram of sample, and the
percentage of AA relative to the results found before in vitro
digestion, called remain AA (%), was calculated considering the
final and initial values.

Production of Fermented Jussara Pulp
Nanostructures
Electrospun equipment (FLUIDNATEK LE-10, BIOINICIA,
Spain) was used to produce the fermented jussara NFs. The
solution and the jussara pulp were introduced in a 5-ml plastic
syringe. Two concentric steel needles of 1.4 and 0.6 mm inner
diameters were used for polymer solution and FJP,
respectively. Flow rates for the PEO solution were at
600 μL/h, whereas FJP flowed out at 200 μL/h, at controlled
room temperature (20–25°C) and relative humidity (50–60%).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8144663

Giaconia et al. Production of Fermented Jussara Nanostructures

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Tip-to-collector distance and voltage were fixed at 10 cm and
24 kV, respectively (Ramos et al., 2020; Ramos et al., 2021).
The samples were removed from the collector and storage at
room temperature (20–25°C) until the characterization
analysis.

Nanostructure’s Characterization
The fermented jussara NFs were characterized by analyzing the
micrographs obtained by field emission scanning electron
microscopy (FE-SEM), from which their diameter sizes were
determined using the DiameterJ software (Hotaling et al.,
2015). Additionally, Fourier-transform infrared spectroscopy
(FTIR) (Bruker Alpha-P, in the 4,000–500 cm−1 range) was
used to provide the characteristic fundamental vibrational
modes and wavenumbers from experimental spectra. Thermal
stability of the core-shell NFs was characterized by
thermogravimetric analysis using a TA Instruments Q-50
apparatus (Mettler-Toledo, Barueri, SP, Brazil), under a
temperature range of 0–700°C and an N2 atmosphere with a
scan rate of 10 C/min. Hydrophobicity was determined by
measurement of the FJP NF’s surface contact angle using a
sessile drop method in a Rame-Hart goniometer (Model 260-
F, Washington, DC, USA) coupled to the software DROPimage
Advanced. Deionized water was used as the wetting liquid, and
the droplet volume was fixed at 5 μl for each standard wetting
liquid. Under room temperature (26 ± 1°C), this parameter was
established as the mean and standard deviation of 10 assessments
at random locations on the surface of the samples (Ramos et al.,
2020; Ramos et al., 2021).

Statistical Analysis
All of the analyses were conducted in triplicate, and the data were
expressed as mean ± standard deviation; the differences between
the samples were detected by analysis of variance, followed by
Tukey, and the differences were considered to be significant at p <
0.05. The statistical analysis was performed using the Statistica
14.0 software.

RESULTS AND DISCUSSION

Proximal Composition of Jussara Before
and After the Fermentation Process
Table 1 shows the results of the proximal characterization
analyses of jussara pulp before and after the fermentation
process. The fermented jussara presented values statistically
equal to those of the jussara in natura for moisture values,
lipid, and carbohydrate contents. However, total dietary
protein and fiber values were statistically higher (95%

confidence) for the fermented jussara than in natura pulp
(Table 1).

This probably happened because the fermentation process
induces the production of enzymes, as mentioned before, which
can lead to higher total protein content. In addition, the pH value
was lower in the fermented sample, which was expected because,
during the fermentation process, the lactic acid content was
increased (Hornedo-Ortega et al., 2017; Gowd et al., 2019).
These results are promising because the fermentation process
provided an expressive change in the food matrix with only 20%
of the pulp in the culture medium.

Phenolic Compound Determination
The content of phenolic compounds was also determined: 97.2 ±
1.82 and 121.4 ± 3.75 mg GAE/100 g for in natura and fermented
pulp, respectively. These results are highly positive because even
with the medium containing only 20% of jussara pulp, the values
are comparable with those obtained for the whole jussara pulp
obtained by Borges et al. (2011), which determined the content of
total phenolic compounds in jussara of different regions and
obtained values ranging between 75.28 and 136.93 mg GAE/
100 g. Furthermore, the phenolic compounds present in the
fermented jussara were statistically higher (95% confidence)
than the fresh pulp, indicating that this process causes a
positive change in the profile of the initially present
compounds in the jussara pulp, possibly the conversion of
anthocyanin structures and other phenolic compounds into
lower molecular weight compounds (phenolic acids) can be an
explanation for the result obtained for the fermented pulp, as
already observed by Braga, Mesquita et al. (2018).

Anthocyanins Quantification by
High-Performance Liquid
Chromatography–Diode Array Detector
The in natura and fermented pulps (sample called initial) and the
solutions were submitted to the in vitro digestion process to
enable comparisons before, during, and after this process. The
importance of determining the concentration of phenolics and
their biological effects throughout all the digestion steps can
answer if the bioaccessible fraction of those bioactive compounds
is maintained and available to be absorbed, and, more
importantly, if the antioxidant capacity remains.

Anthocyanin’s content of samples of FJP in each step of the
in vitro digestion is presented in Table 2. It is possible to observe
the decay behavior of anthocyanins during this process resulting
in the remaining percentage of 30.8%, considering the intestinal
and initial values. This decrease was already expected, as there
was contact with the aqueous medium, enzymatic action, and pH

TABLE 1 | Proximal characterization of jussara pulp before and after the fermentation process.

Jussara pH Moisture (g/100g) Ashes (g/100g) Protein (g/100g) Lipides (g/100g) CHO* (g/100g) Dietary Fibers (g/100g)

In natura 5.6a 90.2a ± 0.76 0.06a ± 0.001 0.15b ± 0.001 0.58a ± 0.05 7.7a ± 0.2 1.43b ± 0.3
Fermented 3.8b 89.8a ± 0.01 0.06a ± 0.001 0.23a ± 0.03 0.53a ± 0.12 7.5a ± 0.2 1.68a ± 0.1

Different letters on the same column represent values different from each other (p < 0.05); *CHO: carbohydrates.
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variation; besides, it follows the consulted literature (Dueñas
et al., 2005; Braga, Mesquita et al., 2018; Quatrin et al., 2020).

Additionally, the total anthocyanins from FJP8 throughout the
digestion process was acquired, showing a similar behavior but
with a final remaining rate of 32.6%, which demonstrates the
statistical difference concerning the free fermented pulp,
confirming the preservative effect of the PEO over the
transformations that occur in the simulated gastrointestinal
system (Table 2).

The idea of assessing the influence of the polymer, still in the
form of a solution before the electrospinning process, on the AA
of the in natura and fermented pulp, was based on the hypothesis
that the behavior of the added polymer solution from the jussara
can differ from the behavior of the isolated pulp, as well as the
disposition of the net formed between the incorporated pulp and
the nanostructure formed by the polymer. Several authors have
concluded that polymers can act as protective agents for natural
pigments and bioactive compounds (Vroman and Tighzert, 2009;
Haladjova et al., 2014; Mozumder et al., 2017). Some even show
the comparison between the protection caused by the polymer
before and after obtaining nanostructures (Antelo et al., 2008;
Kwak, 2014; Braga et al., 2016; Esfanjani and Jafari, 2016; Murthy
et al., 2018).

Determination of Antioxidant Activity
Studies presented in the literature have shown that the AA of
phenolic compounds does not occur due to the individual action
of a particular compound but through the interaction between the
various compounds present simultaneously, causing an increase
or decrease in the AA. The effect can be synergistic or

antagonistic depending on the compounds present in a given
extract (Borges et al., 2011). This may have happened in the case
of the present study, in which, after the fermentation process, an
increase in the AA was found.

Therefore, the AA of the simulated digestion steps of the FJP,
FJP8, and the jussara pulp before fermentation (JP) was
determined (Table 3).

From the analyses performed, it also was possible to observe a
decrease in AA throughout the simulated digestion, possibly due
to exposure to different pH values beyond the present
compounds’ optimal conditions, especially anthocyanins (Chen
et al., 2018). On the other hand, it can be observed that the
polymer showed a positive effect in maintaining the AA
throughout the in vitro digestive process, considering the
remaining AA value.

The fermentation process positively affected the AA, as a
higher value was reached, considering both methods, ORAC
and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS), for the JPF compared with the JP. It is also possible
to affirm that the polymeric solution presented a protective effect
during the simulated digestion process considering the evaluated
samples. The remaining percentages of AA were 83.4 and 67.4%
for ABTS and ORAC methods, respectively, with the statistical
difference between these results with JP and JPF remaining
values. The results are promising, and through them, it is
possible to detect the benefit of using the polyethylene oxide
polymer in solution to protect the biological effect of bioactive
compounds of the jussara pulp before and after the fermentation
process.

No studies were found in the consulted literature evaluating
polymeric solutions’ AA, only analyses with the polymeric
nanostructures containing bioactive compounds; however,
none of them have utilized food matrix fermented before the
electrospinning process. Furthermore, the studies that used the
same polymer (PEO) did not evaluate a raw material rich in
anthocyanins, and when they considered it, it was together with
another polymer and using different techniques to produce
nanostructure; therefore, it was not possible to carry out direct
comparisons.

Locilento et al. (2019) produced a membrane formed by PLA
and PEO NFs to preserve the action of an antioxidant extract of
grape skin. Such membrane was submitted to the in vitro
digestion process and maintained its antioxidant capacity. The

TABLE 2 | Determination of anthocyanins during the simulated digestion process
(in vitro) of fermented jussara pulp (FJP) and the solution of fermented jussara
pulp and PEO 8% (FJP8).

Digestion
steps

Anthocyanins (µg/100 g) Remain
(%)Initial Oral Gastric Intestinal

FJP 519.8aA

± 24.2
425.3aB

± 11.9
250.2aC

± 7.0
160.1aD

± 13.8
13.8b

FJP8 224.0bA

± 11.3
204.1bB

± 20.2
129.8bC

± 12.0
73.4bD

± 4.9
32.6a

Different small letters on the same line represent values different from each other (p <
0.05); different capital letters on the same column represent values different from each
other (p < 0.05).

TABLE 3 | Determination of antioxidant activity (AA) during the simulated digestion process (in vitro) of jussara pulp (JP); fermented jussara pulp (FJP) and solution with
fermented jussara pulp and PEO 8% (FJP8).

Sample Digestion steps Remain AA (%)

Initial Oral Gastric Intestinal

ABTS (µM TE/g) JP 121.5bA ± 8.1 86.0aC ± 5.7 104.7aB ± 4.3 72.3aD ± 2.9 59.5b

FJP 131.2aA ± 3.1 40.0bB ± 4.8 22.2cC ± 2.9 40.8bB ± 1.8 31.1c

FJP8 46.9cA ± 6.6 30.3cC ± 3.0 49.1bA ± 2.8 39.1bB ± 4.1 83.4a

ORAC (µM TE/g) JP 204.9bC ± 34.6 248.6aA ± 20.8 209.7aB ± 46.9 111.8bD ± 27.0 54.6b

FJP 217.6aA ± 24.6 116.2cB ± 22.2 92.9cC ± 23.8 89.9cD ± 32.1 45.0c

FJP8 199.8cA ± 29.2 186.9bB ± 10.3 141.1bC ± 26.9 134.7aD ± 14.9 67.4a

Different small letters on the same line represent values different from each other (p < 0.05); different capital letters on the same column represent values different from each other (p < 0.05).
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NFs were produced by electrospun, as is the case for this study.
Given the above, one can observe the promising effect of polymer
PEO together with other bioactive compounds, indicating that its
use can be effective in protecting them.

Tong et al. (2020) nanoencapsulated Aronia anthocyanins in
potato amylopectin. They submitted them to the in vitro digestion
process, verifying the AA before and after this step. Their results were
better when compared with conditions without the involvement of

FIGURE 1 | Field emission scanning microscopy images electrospinning of fermented jussara pulp nanofibers.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8144666

Giaconia et al. Production of Fermented Jussara Nanostructures

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


the nanocapsule. In the same sense, Jeong et al. (2020) used chitosan
and carrageenan to nanoencapsulate various fruit combinations, and
de Dicastillo et al. (2019) nanoencapsulated açaí extract in zein; both
studies submitted the samples to the in vitro digestion process. Also,

they obtained the protection of the AA at the end of the digestive
simulation.

Considering these results, it is possible to maintain the AA of
anthocyanins and their metabolites obtained in fermentation
processes with the protection of polymers. Therefore, the
present study enables the promotion of positive advances for
the preservation of these bioactive compounds.

Nanostructure’s Characterization
After evaluating the polymeric solution, an electrospinning process
was carried out to produce FJP NFs. The PEO solution and FJP
were injected separately into the equipment, as the electrospinning
coaxial mode was applied to elaborate fermented jussara NFs. FE-
SEM images from sample electrospun fibers were used (Figure 1)
to measure their diameters (nanometers). Although samples did
not present a consistent orientation, a homogeneous fiber size was
observed, as they are nondependent characteristics. The sample
showed 101.2 ± 26.2 nm diameters, confirming that the structure
obtained belongs to a nanoscale.

Besides, FE-SEM analysis, thermal gravimetric analysis
(TGA), FTIR, and hydrophobicity of fermented jussara NFs
were determined. The FJP NF synthetized thermal stability
was evaluated using TG, and the thermograms (TGA) derived
thermogravimetry (DTG) curves for fermented jussara NFs
shown in Figure 2. TG analyses revealed a multistep weight
loss curve for all samples.

TGAs revealed a multistep weight loss curve for the sample, as
expected considering the complexity of the fermented jussara. The

FIGURE 2 | Thermal gravimetric analysis thermograms of fermented
jussara pulp nanofibers.

FIGURE 3 | Fourier transform infrared spectroscopy spectra of jussara pulp nanofibers and fermented jussara pulp nanofibers at room temperature.
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losses of water and solvents originated in the first region of
temperatures below. The region presents values greater than
200°C, associated with PEO decomposition. For the fermented
jussara NFs, weight loss occurred in four stages. Moreover, the
NFs showed thermal stability at temperatures up to 200 C,
characterized by an exothermic peak, indicating a minimal weight
loss in this region.

Additionally, the sample showed a total mass loss of
approximately 80%. The delineation of the thermal behavior of
NF is fundamental to promoting their application in foodstuff as
natural pigments. Furthermore, thermally stable structures increase
commercial interest for these compounds, as industrial processing for
food production often requires heating steps (Nogueira, 2001).
Considering the TGA results, the potential to use these NFs into
foodstuff is evident, as it is thermally stable and could endure the food
process conditions in heat treatments.

The extract of freeze-dried açaí fruit, containing high
anthocyanin concentration, achieved its maximum degradation
at 162.5°C and has demonstrated an early degradation that started
at approximately 100 C (de Dicastillo et al., 2019). When PEO
NFs with jussara pulp were submitted to thermal treatment, it was
possible to observe these decomposition bands (Ramos et al.,
2021). The same bands can be observed in the fermented jussara
NF sample, which infers that the fermentation process did not
interfere with the high thermal stability of the NFs.

To better understand the FJP NFs, the FTIR spectra region of 400
to 4,000 cm−1 were obtained (Figure 3) for the in natura and FJP
NFs. Figure 3 shows only the spectra region 1,700 to 700 cm−1

because, in the previous work of the same research group of the
present work (Ramos et al., 2021), it was verified that this selected
region represents the presence of anthocyanins in the PEO bands.

In the FTIR spectrum, it is possible to observe characteristic
bands of the anthocyanin structure in both samples. The
anthocyanin exhibited absorption bands at 1,072 cm−1,
corresponding to bending vibration of C–O–C groups
(Vasincu et al., 2014). Besides, there are bands corresponding
to a = C-O-C group of flavonoids and the skeletal stretching

vibration of the aromatic rings (1,072, 1,506, and 1,271 cm−1)
(Favaro et al., 2018). The presence of the C-N group is assigned
with bands between 1,400 and 1,450 cm−1 (Syafinar et al., 2015).

No significant differences were observed in the FTIR spectra
for the samples. Therefore, it is possible to monitor the
interaction between PEO and the jussara pulp before and after
the fermentation. The PEO spectra present a peek at the
1,250 cm−1 region, corresponding to the presence of ethereal
oxygen and the crystal phase of PEO (Vega-Lugo and Lim,
2012), but it was changed in the spectra of samples. This
effect can be observed when PEO was used to incorporate
other bioactive compounds, such as cyclodextrin and β-
carotene (Uyar and Besenbacher, 2009; Peinado et al., 2016).

The bands observed at 1,066 and 1,091 cm−1 correspond to the
skeletal stretching vibration of the aromatic rings and = C–O–C
group of flavonoids. Therefore, it is possible to identify peaks in
the 1,506 and 1,271 cm−1 in the PEO (8%) with jussara pulp
sample due to the skeletal stretching vibration of the aromatic
rings. These peaks are not present in the PEO (8%) with the FJP
sample as the fermentation process possibly transformed part of
the phenolic compounds present in the pulp, as was also
proposed by antioxidant analysis.

To investigate the hydrophobicity, the surface contact of the
FJP NFs was determined according to a previous study of the
present research group (Ramos et al., 2021) when jussara pulp
NFs were evaluated. Regarding samples presenting surface
contact angles below 90°, shown in Figure 4, they were
considered hydrophilic, whereas those above 90° were
designated as hydrophobic. The FJP NFs obtained in this
study kept their hydrophilic property (von der Mark and Park,
2013; Marmur et al., 2017; Kaufman et al., 2018).

CONCLUSION

As the results from the data studied in the present work were
reached, it was possible to verify that the fermentation process

FIGURE 4 | Contact angle values (mean ± standard deviation) and images from conditions of fermented jussara pulp nanofibers.
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increased AA and could be considered strong evidence of the
role of microorganisms in helping to improve the beneficial
properties of anthocyanins. Furthermore, the fermentation
process shows to be a promising tool in developing food
products using fruits rich in anthocyanins, enhancing their
properties, particularly AA, and opening a wide range of
applications in the food industry, as the association with a
polymeric solution. The FJP NFs were successfully tailored,
which will very possibly aid the maintenance of AA during the
in vitro digestion process. This answer will be studied in
future works.
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