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A B S T R A C T   

The functionalized MoS2 (f-MoS2), synthesized at different temperatures, was incorporated in polybutadiene (PB) 
rubber as a nanofiller and then vulcanized with sulfur without any further additives. The incorporation of f-MoS2 
into PB matrix promotes significant improvements in swelling properties that can be even compared to tradi-
tional fluorocarbon (FKM) and nitrile (NBR) rubbers. Moreover, the statistical results showcase that is possible to 
modulate the swelling behavior of the rubber nanocomposite by varying the amount of PB grafted on f-MoS2.   

1. Introduction 

High-performance rubber nanocomposites have attracted attention 
owing to their wide range of applications which combines the visco-
elastic properties of rubbers with the functionality of several types of 
reinforcing nanofillers [1–7]. Currently, the research on developing 
novel nanofillers becomes imperative in order to enhance the thermal, 
mechanical, swelling and processing properties as well as to overcome 
the environmental drawbacks caused by carbon black, which is the most 
used filler in the rubber industry [8]. 

Over the years, two-dimensional MoS2 has emerged as a potential 
nanofiller candidate to be incorporated in rubbers [9] because of its high 
Young’s modulus (0.3 TPa) [10] allied with fascinating properties in 
catalysis [11], sensors [12,13], and field-effect transistors [14,15]. 
However, a homogeneous dispersion of MoS2 in polymeric matrices 
cannot be easily achieved using traditional blending techniques due to 
the lack of reactive groups and poor interaction with solvents of most of 
polymer matrices [16]. A further step towards enhancing the MoS2 
dispersion is by surface functionalization with covalent or non-covalent 
ligands [17,18]. For instance, recent advances have been reported on 
MoS2 functionalized with organic thiol ligands (non-covalent) [19], 
diazonium salts (covalent) [20], and different polymers (cova-
lent/non-covalent) [21]. Typically, rubbers are cross-linked polymers 
able to absorb a large amount of solvent without dissolving [22] and the 
incorporation of functionalized MoS2 in these types of polymers 

represents a growing field of applications due to the excellent swelling 
control and enhanced mechanical properties [23,24]. In this context, 
polybutadiene (PB) rubber, an example of cross-linked polymer [25,26], 
is an interesting prototype to investigate the effects induced by func-
tionalized MoS2 on its structure. PB is present as a copolymer with nitrile 
or styrene resulting, respectively, in nitrile-butadiene rubber (NBR) and 
styrene-butadiene rubber (SBR), which are the most important com-
mercial rubbers due to its widespread industrial applications [27]. The 
investigation of swelling-ratio on novel rubbers nanocomposites is 
essential to determine its structure [28] and potential industrial appli-
cations (i.e. automotive, aerospace, oil and gas, etc.) [29]. Apart from 
fluorocarbon rubber (FKM), which exhibits outstanding chemical resis-
tance, traditional rubbers (i.e. PB, SBR and NBR) are usually nonresis-
tant to organic solvents, certain types of oils and greases which impair 
their properties and the effects are undesirable in most applications. 
However, as it is known, the fabrication of FKM is difficult and expen-
sive, leading to the development of new functional rubbers with high 
chemical resistance (low swelling-ratio) for advanced applications [30, 
31]. 

In this communication, MoS2 was functionalized with PB (f-MoS2) 
via single-step liquid-phase exfoliation (LPE) process using ultrasonic 
bath at different temperatures following the protocol that we previously 
reported [32]. Here, we noticed that is possible to control the concen-
tration of PB grafted on the edge sites of MoS2 by controlling the ul-
trasound bath temperature. Moreover, the f-MoS2s nanofiller were 
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incorporated in different loadings in PB and then vulcanized only with 
sulfur, without any further additives, resulting in f-MoS2/PB rubber 
nanocomposites that showed significant improvements on the reduction 
of swelling ratio compared to neat PB and traditional commercial rub-
bers (i.e. FKM and NBR) in toluene and methyl-ethyl ketone (MEK). The 
results indicated that the swelling behavior of the f-MoS2/PB is governed 
by the amount of PB functionalized onto MoS2 surface. Our findings 
provide new insights into improving swelling control in rubber induced 
by functionalized layered materials without using carbon black in its 
composition. 

2. Results and discussion 

We start the discussion by performing the morphological and struc-
tural characterization of the materials obtained. Fig. 1a shows that f- 
MoS2 synthesized at 15 ◦C (f-MoS2T15), 30 ◦C (f-MoS2T30) and 60 ◦C (f- 
MoS2T60) have high colloidal stability after six days in the ultrasonic 
bath (See Materials and Methods in SI). It is expected that the temper-
ature plays an important role in LPE methods [33,34], inducing modi-
fication of the materials properties and solution concentration [35]. 
Fig. 1b shows the Raman spectra collected for bulk MoS2 and f-MoS2s. 

The frequency difference between E1
2g and A1g is 26.5 cm− 1 for bulk--

MoS2, as expected for non-exfoliated material [36]. For f-MoS2s, the 
frequency difference ranged from 24.8 to 25.5 cm− 1, indicating a high 
degree of exfoliation (~4–10 layers) [37]. Note that the frequency dif-
ference decreases when f-MoS2 is synthesized at higher temperatures (i. 
e. f-MoS2T60), corroborating to the fact that the higher the temperature 
during the LPE process, the thinner are the exfoliated flakes obtained 
[33,34]. This is also in agreement with our AFM analysis. The line 
profile analysis obtained by AFM shows f-MoS2 sheets ranging from 
~5.5 nm (f-MoS2T60) to ~7.0 nm (f-MoS2T15) of height, which is 
equivalent to 7–9 layers [38] (See Figure S1a-c, SI). Furthermore, 
UV–visible spectra (Figs. S2 and SI) show the characteristics A and B 
excitonic absorption bands at 612 nm and 674 nm, respectively, which 
also indicates the exfoliation of MoS2 [39]. 

The diffractogram of bulk MoS2 in Fig. 2 showed all characteristic 
peaks expected for this material corresponding (002), (004), (100), 
(103), (006), and (105) planes. The diffractogram of f-MoS2 showed the 
absence of all peaks except the peak corresponding to the basal plane 
(002) that indicates the exfoliation of the sheets. The presence of only 
(002) plane suggests restacking of the functionalized sheets on the 
substrate during the drying process. The restacking has been reported in 
several works, mainly in the process involving lithium intercalation 
[40]. SEM images reveal that f-MoS2s are morphologically different 
from the bulk MoS2 [41] (See Figure S3-S5, SI) and the functionalized 
nanosheets are randomly oriented. In addition, it is possible to verify the 
random stacking corroborating with the diffraction patterns in Fig. 2 
[42]. AFM and SEM images also show flakes with a lateral size smaller 
than 1.0 μm and few surface defects. 

The electronic structure and the interaction between MoS2 and PB 
chains were studied by TEM and XPS. The representative TEM image 
(See Figure S6a-c, SI) shows several f-MoS2 flakes electron transparent 
indicating a high degree of exfoliation which agrees with Raman mea-
surements. After the deconvolution process, the XPS spectra of Mo3d 
show the 226.2eV peak referring to the S2s of S− 2, 229.4eV and 232.6eV 
peaks corresponding to Mo–S bonds of Mo4+ 3d5/2 and Mo4+ 3d3/2, 
respectively [43]. Furthermore, it was able to identify the 233.7eV and 
236.2eV corresponding to Mo–O bonds of Mo6+ 3d5/2 e Mo6+3d3/2, 
respectively [43]. The partial oxidation of MoS2 is due to the oxidative 
mechanism in LPE process [35] (See Figs. S7a–c). Next, to verify the 
chemical interaction between PB and MoS2 flakes, carbon C1s peaks 
were evaluated (Figs. S8a–c). The analysis of C1s peaks of neat PB 
showed C––C, C–C, and C–H bonds as expected. However, the analysis of 
f-MoS2s showed a complex set of C1s peaks after the deconvolution 
process. We identified peaks at 286.6eV and 288.7eV, indicating C–C–S 
and C–S bonds, respectively, regardless of the synthesis temperature 
[44]. The sulfur S2p of f-MoS2 also suggests the presence of S–C peaks at 
164.8eV (See Figs. S9a–c) [45]. Therefore, our analysis suggests that the 
functionalization occurs regardless of synthesis temperature. 

Thermogravimetric analysis (TGA) (Figs. S10 and SI) was performed 
in order to quantify the amount of PB present in f-MoS2s as well as to 
verify its correlation with the ultrasound bath temperature of the single- 
step LPE method. Bulk MoS2 undergoes a thermal degradation at 377 ◦C 
with a weight loss of 12.68 wt% that we attribute to the loss of SO2 
during this thermal event [46]. The difference between the bulk MoS2 
curve and f-MoS2s represents, exclusively, the mass loss of the PB grafted 
on the MoS2. Thus, TGA curves indicated a PB concentration of 2.57 wt 
%, 6.68 wt%, and 7.60 wt% for f-MoS2T15, f-MoS2T30 and f-MoS2T60, 
respectively. The increase in PB concentration on MoS2 (almost 
three-fold between 60 ◦C and 15 ◦C) may be due to cascade effects: 
initially, increasing temperature increases the sonication induced scis-
sion events. Then, the successive scissions in ultrasound bath leads to an 
increasing number of sulfur active edge sites of MoS2 that interact with 
more PB chains [35,40]. Now, we focus our attention to the swelling 
behavior of f-MoS2/PB rubber nanocomposites (Figure S11a-j, SI). The 
swelling ratio depends on the nature of the additives, their 

Fig. 1. a) Photograph of f-MoS2 colloidal dispersions in toluene: f-MoS2T15, f- 
MoS2T30 and f-MoS2T60. b) Raman spectra of bulk-MoS2 (black), f-MoS2T15 
(red), f-MoS2T30 (blue) and f-MoS2T60 (green). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 2. XRD diffractogram of bulk-MoS2 (black) and the respective f-MoS2: f- 
MoS2T15 (red), f-MoS2T30 (blue), and f-MoS2T60 (green). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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concentration/dispersion and processing [47]. Fig. 3a–b shows the 
swelling behavior of neat PB and f-MoS2/PB rubber nanocomposites in 
MEK and toluene, as a function of the f-MoS2 loading (wt%) and its 
synthesis temperature. 

One can see that for all samples there is a significant reduction on the 
swelling ratio with increasing the f-MoS2 loading or its synthesis 

temperature (See Table S1 in SI). For instance, the f-MoS2T60/PB 40 wt 
% rubber nanocomposite, which presented the best result, swelled 3.26 
± 2.72% in MEK (Figs. 3a) and 55.00 ± 10.00% in toluene (Fig. 3b). The 
swelling of neat PB rubber was 56.22 ± 3.00% in MEK (the first mea-
surement is shown in Fig. 3a) and 637.00 ± 53.00% in toluene (the first 
measurement is shown in Fig. 3b), respectively. The comparative 

Fig. 3. Swelling-ratio curves of neat PB and f-MoS2/PB rubber nanocomposites as a function of nanofiller loading and its synthesis temperature: a) in MEK and b) 
in toluene. 

Fig. 4. a) TEM image of f-MoS2T60/PB rubber at 40 wt%. Schematic illustrations of f-MoS2/PB nanocomposites: b) proposed interaction between PB matrix and f- 
MoS2 and c) proposed interaction between PB matrix and f-MoS2 synthesized under different ultrasound bath temperatures. 
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swelling test for NBR and FKM in MEK were 122.00 ± 0.04% and 
168.00 ± 0.03%, respectively. In toluene, the swelling ratio for NBR and 
MEK were 61.00 ± 0.007% and 8.00 ± 0.028%, respectively. Note that 
even neat PB rubber had better swelling performance in MEK than NBR 
and FKM. This result may be ascribed to the polarity difference between 
MEK and PB: particularly, MEK is considered a polar solvent due to 
ketone function in its structure. On the other hand, PB is highly non- 
polar rubber which hinders the rubber/solvent interaction. Both NBR 
and FKM have polar groups in its structure (i.e. acrylonitrile and fluo-
rine) which facilitates the rubber/solvent interaction leading to higher 
swelling-ratio. TEM image (Fig. 4a) revealed a good compatibility and 
dispersion, even at 40 wt%, between f-MoS2 nanofiller and PB matrix 
without signs of percolation. Therefore, the striking reduction in 
swelling ratio of the rubber nanocomposites must be a direct conse-
quence of interfacial nanofiller/PB interaction in such a way that the 
swelling results can be compared to swelling of traditional FKM and NBR 
rubbers. Obviously, FKM presented a lower swelling ratio in toluene 
compared to f-MoS2T60/PB 40 wt% rubber nanocomposite. However, it 
is worth remembering that both FKM and NBR have several additives in 
its formulation, such as, zinc oxide, oils, plasticizers and, of course, 
carbon black (See rubber formulations in Tables S2 and S3, SI). Those 
additives were not used in this study in order to evaluate the effect of the 
nanofillers and its loadings on swelling behavior of rubber nano-
composites. Based on these results, we believe that the grafted PB, 
induced by MoS2, is acting as a cross-linking agent in the PB matrix that 
contributes for the great reduction on swelling ratio by reducing the free 
volume of PB rubber structure [48] (Fig. 4b). The reduction of free 
volume in rubber structure creates constrained regions [49] that ham-
pers the penetration of the solvent in the polymeric matrix [50]. 

Through statistical analysis (See Tables S4 and S5 and statistical 
discussion in SI), our results in Fig. 3a–b indicate that the swelling 
properties of rubber nanocomposites depend on the nanofiller loading 
and its synthesis temperature. Clearly, it is expected a reduction on 
swelling ratio as nanofiller loading increase because the interactions 
between nanofiller/PB will increase, reducing the free volume. Ac-
cording to swelling ratio curves in Fig. 3a–b and the data in Table S1 
(See SI), as the f-MoS2 synthesis temperature increase, at constant 
nanofiller loading, we noticed a reduction of the swelling ratio of the 
rubber nanocomposites. In this case, we believe that the effect of syn-
thesis temperature on swelling behavior is intimately correlated with 
LPE exfoliation mechanism [35,40] which increases the amount of PB 
functionalized on the edge sites of f-MoS2 calculated by TGA. Therefore, 
increasing the grafted PB concentration will interact more efficiently 
with PB matrix creating more constrained regions compared to the same 
f-MoS2 synthesized at lower temperatures (Fig. 4c). 

3. Conclusion 

In summary, functionalized f-MoS2 nanofillers were synthesized 
through single-step LPE at different ultrasound bath temperatures. The 
incorporation of f-MoS2 in PB rubber without any further additives 
promoted significant enhancement on swelling properties that can be 
compared to traditional commercial rubbers (namely FKM and NBR). 
This is an interesting result that turns f-MoS2 nanofiller as a great 
candidate to replace carbon black in rubber formulations. Moreover, 
through statistical analysis (See SI), we noticed a direct and independent 
correlation between the synthesis temperature of nanofiller and its 
loading in a PB matrix on the reduction of the swelling ratio. Thus, we 
were able to modulate the amount of absorbed solvent with nanofiller 
loading or its temperature of synthesis. Finally, the results showed that 
the enhancement on swelling property is due to the good interface 
interaction between grafted PB in f-MoS2 and PB matrix reducing the 
free volume in rubber nanocomposite structure. The f-MoS2 nanofiller 
opens new opportunities for the development of novel and functional-
ized materials with superior swelling characteristics and controlled 
chemical resistance. 
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