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Abstract
This study describes the sustainable and eco-friendly synthesis of the silica-based mesoporous structure from the use of alterna-
tive amorphous silica extracted from rice husk ash (RHA). The mesoporous material was called MCM-48 (RHA), and its
application as adsorbent to the antimony (Sb) remediation in environmental samples was tested. The adsorbent was prepared
by an efficient and sustainable hydrothermal method, which exhibited an amorphous framework with type IV isotherms and type
H1 hysteresis, and surface area, total pore volume, and pore diameter values of 820.9 m2 g−1, 0.6 cm3 g−1, and 3.7 nm,
respectively. In addition, the MCM-48 (RHA) exhibited a three-dimensional cubic mesostructure (Ia3d space-group symmetry)
with a narrowmesopore distribution, uniform spherical particles, and well-defined architecture. Multivariate optimization using a
factorial design (24) was employed in the adsorption tests of Sb. The variables evaluated and the optimum conditions obtained
were (i) adsorbent mass (45 mg); (ii) adsorption time (115 min); (iii) pH 2; and (iv) Sb initial concentration of 8 mol L−1. In these
conditions, we found a maximum adsorption efficiency of Sb in the order of 95%. The adsorbent material proposed in this study
proved to be efficient for Sb remediation in water samples under different experimental conditions. A total of five samples were
analyzed and Sb concentrations on the order of 8 ppm were added, in which a removal efficiency of Sb raging between 88 and
96% was obtained for the remediation in real samples. In addition, the low cost of the synthesis of MCM-48 (RHA) in
combination with its high and fast adsorption capacities offers a great promise for wastewater remediation, which makes it very
attractive for environmental approaches.
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Introduction

Industrial waste, commonly thrown into aquatic environ-
ments, contains both inorganic and organic contami-
nants, representing a global concern for many countries
(Akhil et al. 2021). Among the various inorganic con-
t aminan t s , an t imony (Sb) i s cons ide red non-
biodegradable pollutant and that can cause many envi-
ronmental damages. Furthermore, carcinogenic contami-
nants cause health problems, especially for human be-
ings (Viczek et al. 2020). The main industrial activities
that can contribute to the discharge of Sb in aquatic
environments come from the industries of fire retar-
dants, pigments, mining, and ceramics (Aquino et al.
2016; Chu et al. 2019; Meng et al. 2020). Some coun-
tries, such as China, Grace, and India, have suffered
from problems of contamination in groundwater by Sb,
which can cause damage to human health (Antoniadis
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et al. 2019; Xu et al. 2019). In this sense, the develop-
ment of methodologies that are efficient for the Sb re-
mediation from wastewater is essential.

Among the various approaches in the literature for the Sb
remediation (Xiang-Xue et al. 2019; Chen et al. 2020), ad-
sorption technology is the most common method used, and
several adsorbents have been developed (Zhao et al. 2010),
mainly due to the various advantages presented by the adsorp-
tion technology, such as no generation of byproducts, easy
operation and reusability, and low cost (de Jesus et al.
2021). Despite the various absorbent materials already avail-
able in the literature, it is still necessary to find an absorbent
material that has the following characteristics: (i) low cost,
eco-friendly, and sustainable; (ii) good physical and chemical
stability; (iii) excellent textural and structural features; and (iv)
high selectivity, so on (Costa and Paranhos 2020; Costa et al.
2020b). In this context, the synthesis of mesoporous materials
has attracted a great deal of interest for the adsorption process
and have already been used with success for the removal of
the organic compounds (Santos et al. 2019; Costa et al. 2020c,
d, 2021a, b) and inorganic constituents (de Sá et al. 2020;
Costa et al. 2020a).

The mesoporous structures were synthesized for the first
time in the early 1990s and have since been used in the most
diverse technological applications, such as extraction methods
(Santos et al. 2019; de Sá et al. 2020), biomedical approaches
(Kankala et al. 2020), catalytic applications (Doustkhah et al.
2019), energy devices (Wang et al. 2018), and filler material
in mixed matrix membranes (Costa et al. 2020c, 2021b). The
best known and/or studied mesoporous materials are those of
theM41S family, represented byMCM-41 (hexagonal phase),
MCM-50 (lamellar phase), andMCM-48 (cubic phase) (Costa
et al. 2015, 2017a, 2017b; Santos et al. 2019), which is the
focus of this approach.

The mesoporous structures have attractive features, such as
good thermal and mechanical stability, and high surface area,
which allows the diffusion and/or adsorption process of the
organic and inorganic compounds through their uniform pores
and high mesoporous arrangement, as well as ease in the syn-
thesis and functionalization process of these ordered structures
(Costa et al. 2014, 2015, 2017a, 2017b; Saleh 2020; de Jesus
et al. 2021). The silica-based mesoporous arrays are synthe-
sized via the hydrothermal method from the use of a surfactant
(directing agent), a catalyst (acid or basic), and mainly from a
silica source, which is responsible for forming the framework
of the amorphous material (Costa et al. 2015, 2017b, 2020e).

In the literature, there are several works showing the syn-
thesis of these mesoporous materials from the use of the com-
mercial silica sources, mainly tetraethylorthosilicate (TEOS)
(Costa et al. 2014, 2017b; Ambursa et al. 2017), silica gel
(Santos et al. 2019), and sodium silicate (Costa et al. 2017a,
2019a; Santos et al. 2019). However, there are some works
that show the preparation of the mesoporous structures from

the use of alternative, sustainable, and eco-friendly materials
as a silica source, such as fly ash (Castillo et al. 2018), rape
straw (Li et al. 2019), straw ash (Ma et al. 2016), bamboo leaf
ash (Arumugam et al. 2018), rice husk (Sohrabnezhad and
Daraie Mooshangaie 2019), sedge ash (Ghorbani et al.
2013), and sugarcane bagasse (Norsuraya et al. 2016). In the
present approach, we use the rice husk ash (RHA) as an alter-
native, inexpensive, eco-friendly, low-cost, abundant, and ac-
cessible source of amorphous silica for the synthesis of the
mesoporous material with a cubic phase (MCM-48 (RHA)),
which was later used as an adsorbent material in the Sb re-
moval in aqueous media.

Most of the approaches found in the literature, which are
dedicated to the adsorption studies, are carried out from the
univariate optimization of the adsorption tests, which aim at
understanding the adsorption mechanism between the adsor-
bent material and the adsorbate, especially from the correla-
tion of experimental adsorption data with kinetic and isother-
mal theoretical models (Costa et al. 2014; Costa and Paranhos
2019). However, these approaches are laborious and require
expert analyst.

Recently, a demand has emerged for the optimization steps
of the procedures that are fast and with a reduced number of
experiments (Ferreira et al. 2018). In this sense, the multivar-
iate optimization techniques have been shown powerful to
evaluate the variables that affect the analytical response in
order to obtain the best conditions of optimization to ensure
the procedure reliability (Saleh et al. 2017, 2018; Adio et al.
2017). Among the multivariate optimization tools, factorial
design is more employed and allows a preliminary evaluation
of the variables for the development of linear models (Costa
et al. 2019c; Gamela et al. 2020). These tools have numerous
advantages, such as (i) possibility of evaluating synergistic
and antagonistic interactions between variables; (ii) possibility
of forecasting the system under study in a condition that has
not been tested in practice; and (iii) reduction in the generation
of chemical waste which contributes to the principles of green
chemistry (Ferreira et al. 2017; Costa et al. 2018). Factorial
designs have been used in several areas, but their use in ad-
sorption procedures has not been explored sufficiently.

In this context, the factorial design was employed to opti-
mize a procedure for Sb remediation in wastewater. In addi-
tion, the adsorbent material used was obtained from a cleaner,
low-cost, and eco-friendly approach from the use of alterna-
tive amorphous silica extracted from RHA.

Experimental

Standards, solvents, and reagents

The rice husk (RH) of agulhinha (Indian origin) variety was
received from the Brazilian Agricultural Research
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Corporation (Embrapa) (São Carlos, São Paulo, Brazil).
Details about thermal treatment realized to obtain RHA from
RH and characterizations are available in the publication of
Costa et al. (2018). Ultrapure water (18.2MΩ cm−1 resistivity)
produced by a Milli-Q® Plus Total Water System (Millipore
Corp., Bedford, MA, USA) was used to prepare all the solu-
tions. The Sb analytical standards (Qhemis, São Paulo, SP,
Brazil), cetyltrimethylammonium bromide (CTAB) (Neon,
Suzano, SP, Brazil), sodium hydroxide (NaOH) (Synth,
Diadema, SP, Brazil), and hydrochloric acid (HCl) 37% w/v
(Synth, Diadema, SP, Brazil) were used during the procedure.
All materials were washed with soap and soaked in 10% v/v
nitric acid (HNO3) for 24 h. After that, a rinsing step with
ultrapure water was performed, and the materials were left to
dry in a clean hood before use.

Preparation of MCM-48 (RHA) mesoporous array

The mesoporous array (named MCM-48 (RHA)) was synthe-
sized from RHA of the agulhinha variety. Thus, amorphous
silica was extracted from the RHA by leaching with sodium
hydroxide solution and the MCM-48 (RHA) was synthesized
by a hydrothermal route. The extraction of the sodium silicate
solution was performed according to our methodology devel-
oped recently (Costa and Paranhos 2018): Briefly, the RHA
(10 g) was dissolved in NaOH solution (100 mL) in constant
agitation (80 °C, 1 h). After the reaction period, the sodium
silicate solution obtained was filtered (i) through quantitative
filter paper (12 μm) and (ii) through quantitative blue band
filter paper (8 μm), and then it was transferred to a sealed
polypropylene flask at room temperature.

The MCM-48 (RHA) was synthesized as follows: (i) ini-
tially, 10 g of CTAB was dissolved in 70 mL of NaOH solu-
tion (0.75 mol L−1) under constant stirring at room tempera-
ture for 1 h; (ii) after this time, 50 mL of the sodium silicate
solution from RHA was added slowly into the solution; (iii)
later, this mixture was stirred at room temperature for 2 h and
then transferred to a Teflon-lined stainless steel autoclave,
which was placed in a vacuum oven and heated at 100 °C
for 48 h; (iv) after this time, the solution pH was adjusted to
~10 with HCl solution (1 mol L−1) and the reactor was left in
the oven for another 24 h at 100 °C; (v) the solid product
obtained was filtered, washed with deionized water, and dried
in a vacuum oven at 100 °C for 12 h; (vi) finally, CTAB
removal was performed by calcination at 550 °C for 6 h at a
rate of 1 °C min−1.

Characterization of MCM-48 (RHA) adsorbent

The characterization of the RH and RHA was complemented
using scanning electron microscopy-energy dispersive X-ray
spectroscopy (SEM-EDS). SEM analysis was achieved in a
FEG-XL30 (Philips) equipment with an EDS accessory,

operating with the help of a secondary electron (SE) detector
and an accelerator power of at 3 kV. The prepared MCM-48
(RHA) was characterized using Fourier transform infrared
spectroscopy (FTIR) spectra for powder samples in the form
of KBr pastilles achieved in the region of 4000 to 400 cm−1

using a Varian 3100 equipment (at room temperature, 32
scans, and a resolution of 4 cm−1). Powder X-ray diffractom-
etry (XRD) analysis was performed on a LabX XDR-6000
(Shimadzu) equipment using Cu Kα radiation source (λ =
1.5406 Å) at a voltage/current display of 30 kV/30 mA. The
data were collected with a diffraction angle (2θ) ranging from
5 to 80° and a scanning rate of 2° min−1. Nitrogen adsorption
and desorption isotherms of MCM-48 (RHA) (~100 mg was
evacuated for 2 h at 150 °C) were acquired using a NOVA
1200 apparatus at liquid nitrogen temperature (−196.15 °C).
Additionally, the surface area (SBET) and the pore size distri-
bution (DBJH) values were calculated from the adsorption da-
ta, using the Brunauer-Emmentt-Teller and the Barrett-
Joyner-Halenda methods, respectively.

Determination of the Sb

The Sb concentrations were measured using an inductively
coupled plasma optical emission spectrometry (ICP OES)
(iCAP 7000, Thermo Scientific, Waltham, MA, USA).
Argon gas (99.996%, White Martins-Praxair, Sertãozinho,
SP, Brazil) was used to generate the plasma in all ICP OES
measurements. The instrumental conditions were established
as the manufacturer recommendations as follows: power: 1.2
kW, plasma gas flow: 15.0 L min−1, auxiliary gas flow: 1.5 L
min−1, nebulizer gas flow: 0.7 L min−1, sample introduction
flow rate: 2.1 mL min−1. The emission lines monitored were
Sb 206.8 and 231.1 nm.

Multivariate optimization of adsorption procedure

A full factorial design (24) was used in order to optimize
experimental conditions of the adsorption procedure for Sb
removal from wastewater. In this study, the variables were
evaluated in three levels including the central point: (i) solu-
tion pH (2, 6, and 10), (ii) adsorption time (5, 60, and 115
min), (iii) concentration of the Sb standard (2.0, 5.0, and
8.0 mg L−1), and (iv) adsorbent mass (5, 25, and 45 mg). A
total of 19 experiments were carried including triplicate in the
central point, which was used to estimate the pure error. A
response to full factorial design (24) was calculated% removal
of Sb, obtained from Eq. 1:

%removal of Sb ¼ C0−Ceð Þ
C0

� 100

where C0 and Ce (mg L−1) are the initial and equilibrium
concentrations of Sb, respectively.
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Adsorption experiments were conducted in amber flasks (25
°C, 400 rpm) in 5 mL of Sb solution. After the adsorption pro-
cess, the samples were centrifuged (3500 rpm, 5 min), and then
the supernatant concentration was performed using an ICP OES.

Results and discussion

As mentioned before, all characterizations of the RH and
RHA were performed in our recently published article in the
literature (Costa and Paranhos 2018); however, this character-
ization was complemented by SEM-EDS analysis.

Characterization of MCM-48 (RHA) adsorbent

Figure 1a illustrates the FTIR spectra obtained for the MCM-
48 (RHA) mesoporous array before and after the CTAB

removal. The MCM-48 (RHA) with CTAB presents the nar-
row bands centered at 2921 and 2852 cm−1, which are attrib-
uted to the stretching of C−H bond, and at 1485 cm−1 related
to the deformation of C−H bond of CH2 and CH3 groups of
the CTAB surfactant (Costa et al. 2014; Fitaroni et al. 2019).
However, these bands are absent in the calcined MCM-48
(RHA) (Santos et al. 2019). It is also possible to observe for
both samples a broad band at 3443 cm−1, which can be attrib-
uted to the vibrational modes of stretching of O−H bond of
silanol (Si−OH) groups, as well as to the H2O molecules
adsorbed on the surface of the MCM-48 (RHA) (Jang et al.
2009; Saleh 2018), and also a narrow band at 1634 cm−1 is
attributed to the bending vibration of H2O molecules trapped
within the mesoporous matrix of the MCM-48 (RHA).
Finally, it is possible to observe the main bands associated
with the cubic structure of the MCM-48 (RHA), confirmed
by the bands located at 1089 cm−1 attributed to the asymmetric
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Fig. 1 FTIR spectra of MCM-48 (RHA) mesoporous array before and after CTAB removal (a), XRD profile (b), and N2 adsorption/desorption
isotherms and BJH pore size distribution of MCM-48 (RHA) mesoporous material without CTAB surfactant (c)
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stretching mode of siloxane (Si−O−Si) group, 965 cm−1 due
to symmetric stretching of Si−O bond of Si−OH group, 806
cm−1 related to the symmetric stretching mode of Si−O bond,
and 465 cm−1 due to the bending vibration of Si−O−Si group
(Endud andWong 2007; Jang et al. 2009; Sharma et al. 2021).

Although the MCM-48 (RHA) mesoporous matrix pre-
sents a high degree of ordering from the small angle XRD
analysis, it is typical that mesoporous materials also have an
amorphous diffraction pattern, as seen from the high angle
XRD analysis (Fig. 1b), which can be attributed to the amor-
phous condensed silica framework of MCM-48 (RHA) array
from the silica source used in its hydrothermal synthesis
(Costa et al. 2020c).

Figure 1c shows the results of the liquid N2 adsorption/
desorption analysis for MCM-48 (RHA). It is possible to ob-
serve that the N2 adsorption/desorption isotherms present a
characteristic profile of type IV isotherm and type H1 hyster-
esis with high adsorption of liquid N2, according to the
IUPAC classification for nanostructured materials of the
M41S family of mesoporous materials, like the MCM-48
(Santos et al. 2019; Costa et al. 2020c, 2020d). Furthermore,
these results are confirmed by the narrow mesopore distribu-
tion shown byMCM-48 (RHA), which is a characteristic pro-
file of mesoporous matrixes with well-defined regular arrays
of mesopores and high N2 adsorption values. The textural and
structural features of the MCM-48 (RHA) mesoporous array
were calculated from the N2 adsorption and desorption iso-
therms, which are summarized in Table 1. In summary, the
MCM-48 (RHA) mesoporous material showed (i) high sur-
face area (SBET) value, calculated from BET method; (ii) high
pore volume (V) and total pore volume (VT) values; and (iii)
average pore diameter and pore diameter (DBJH) values be-
tween the range of mesoporous materials, which were defined
between 2 and 50 nm. The high degree of ordering of the cubic
mesoporous structure ofMCM-48 has been demonstrated pre-
viously by our group (Santos et al. 2019) from the small angle
XRD analysis, which the (211) and (220) diffraction planes of
mesostructured are assigned as Ia3d space-group symmetry.
The two peaks confirm the presence of a nanostructure formed
by well-ordered arrays of interconnected cubic channels.
Furthermore, the calculated lattice constant (a0) was of the
order of 12.5 nm, which is in agreement with the results of
the textural and structural parameters presented in Table 1.

The SEM images obtained for untreated and treated RH
and RHA, as well as for the MCM-48 (RHA) are shown in
Fig. 2. The untreated RH showed an external epidermis,

which is well-organized and has a rippled surface with an
elongated and contorted shape, as well as the appearance of
a corn cob. However, after the acid treatment carried out there-
in (Fig. 2ii), it is possible to observe that the surface of the RH
has become more rough, due to the dilution or destruction of
the amorphous region of the fibers present in the rice husk
(Johara et al. 2012; Costa and Paranhos 2018). Thus, the ex-
ternal epidermis of the RHA presents the same characteristic
of the raw RH; however, in the external epidermis, it concen-
trates the greater percentage of silica (Della et al. 2002, 2005).
Therefore, Fig. 2iii shows the internal epidermis of the RHA,
which shows the porous structure known as the silica skeleton,
from the burning of the organic matter of the RH fibers, and
this region also contains a considerable amount of silica (Liou
2004; Ahmed and Adam 2007).

The morphology of the MCM-48 (RHA) mesoporous ma-
terial was evaluated by SEM, as shown in the image presented
in Fig. 2iv. Thus, it is possible to observe that the MCM-48
(RHA) presented a morphology consisting of uniform
spherical-like nanoparticles of high porosity from the frame-
work amorphous of mesoporous architecture, which is a typ-
ical feature of the nanostructured mesoporous array of the
M41S family (Costa et al. 2015; Saleh 2015). From the
SEM-EDS analysis, it was possible to determine the chemical
composition of the MCM-48 (RHA) (Fig. 3). The MCM-48
(RHA) presented high content of Si and O, as these are the
main constituents of the framework of the amorphous material
responsible for the formation of the MCM-48 (RHA) meso-
porous material.

Multivariate optimization of adsorption procedure

Usually, the adsorption procedures are carried using a univar-
iate methodology, which requires a high number of experi-
ments, and consequently greater waste generation and higher
cost. To get around these problems, a factorial design was
used to optimize the variables involved in adsorption proce-
dures. Table 2 shows a matrix experimental for the full facto-
rial design (24) containing 19 experiments with real and coded
values and the response in function of the % removal of Sb.
Before evaluating the best conditions for the % removal of Sb,
it was necessary to evaluate the quality of the linear model
obtained from the factorial design. To check the quality of the
linear model, an analysis of variance (ANOVA) was per-
formed, and the results are available in Table 3.

Table 1 Textural and structural
properties of MCM-48 (RHA)
mesoporous material

Sample SBET (m
2 g−1) V (cm3 g−1) VT (cm

3 g−1) DBJH (nm) Average pore
diameter (nm)

MCM-48 (RHA) 820.9 0.2 0.6 3.7 2.7

SBET, BET surface area; V, pore volume; VT, total pore volume; DBJH, pore diameter
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The first step for the evaluation of the model is checking
the significance of regression. For that, a comparison between
the ratio of mean square of regression (MSR) and mean square
of residue (MSr) was performed. In this case, the Fcalculated

(51.8) was 17-fold higher than the Ftabulated (3.1) at the 95%
confidence level. These data demonstrate that the regression
of the model is highly significant, which gives credibility to
the linear model. The second step for the evaluation of the
model is checking if there is lack of fit. In this case, a com-
parison between the ratio of mean square of lack of fit (MSlof)
and mean square of pure error (MSpe) was performed. It was
observed that the model does not present lack of fit because
the Fcalculated (6.2) was lower than the value of Ftabulated (19.0)
at the 95% confidence level. In addition, the quality of the
linear model also was evaluated by analyzing the graphic of
predicted values versus observed, as shown in Fig. 4a. Thus, it
is possible to observe that the model is well adjusted with a
99% regression percentage. This observation confirms the
good fit of the model that is verified in Table 3.

After data processing, the evaluation of best conditions for
adsorption procedure for the % Sb removal was performed by
analysis of Pareto graph (Fig. 4b), evaluating the significance
of the variables and their interactions, at a confidence level of
95% (Ferreira et al. 2018). According to the results presented
in Fig. 4b (Pareto graph), the first-order variables are all sig-
nificant. In addition, some second- and third-order interactions
are also significant. The discussion of the influence of vari-
ables on the % Sb removal will follow the order of

significance presented in the Pareto graph, according to the
following sequence: (i) adsorbent mass, (ii) adsorption time,
(iii) solution pH, and (iv) concentration of the Sb standard.

The adsorbent mass is the most important variable, and the
adsorption efficiency increases with the increase in the mass
of the MCM-48 (RHA) adsorbent material. Removal efficien-
cy of Sb can be related to the increased surface area of meso-
porous array, as well as the availability of more adsorption
sites for Sb within the framework of the architectured matrix
of MCM-48 (RHA) (Costa and Paranhos 2020; Costa et al.
2020b). Thus, to ensure a high removal percentage of Sb, we
choose to use a mass of 45 mg.

The adsorption time is an important variable, especially
when new adsorbents are tested (Costa and Paranhos 2019;
Costa et al. 2020a, 2020d). In this study, the adsorption time
showed a positive effect on the removal efficiency of Sb by
MCM-48 (RHA) adsorbent. From the analysis of Table 2, it is
possible to observe that the evaluated adsorption times pre-
sented excellent results, especially when combined with the
condition of greater mass of adsorbent was used. This behav-
ior can be seen between experiments 9 and 19, as shown in
Table 2, from which we can highlight experiments 9 and 10,
where there was fast adsorption at a low concentration of Sb in
the initial 5 min of contact between the adsorbent material and
adsorbate, whose removal values were 80 and 84%, respec-
tively. This fast adsorption is due to the interaction of Sb with
the most external local sites on the surface ofMCM-48 (RHA)
(Costa et al. 2014, 2015). Figure 4b also shows that the

Fig. 2 MEV of untreated (i) and
treated RH (ii), treated RHA (iii),
andMCM-48 (RHA)mesoporous
array (iv)
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interaction between adsorbent mass and adsorption time is
significant with a negative effect, that is, one of the variables
must be tested at the maximum level and the other at the lower
level. As the adsorbent mass has been fixed at the maximum
level (45 mg), the adsorption time can be fixed using the
condition of the central point (60 min).

The solution pH is an important factor affecting the remov-
al of the metal species in aqueous solution. The dependence
on metal adsorption in function of the solution pH is related to
the type of metal that is in the solution, and to the state of

ionization of the adsorbent functional group, which affects
the availability of the binding sites. Under the established
conditions, the experiments were carried at solution pH rang-
ing from 2 to 10, as shown in Table 2. It is possible to observe
in Table 2 that the removal percentage was adequate in the pH
range evaluated, except in experiments 1, 2, 3, 5, 6, and 7,
which showed removal efficiency below 80%. However, it is
possible to verify that in the mentioned experiments, the ad-
sorbent mass tested was 5 mg, which seems to interfere in the
Sb removal in function of the tested pH range. In the

(a)

(b)

Fig. 3 EDS spectrograph (a) and
elemental mapping (b) of MCM-
48 (RHA) mesoporous material
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experiments that used mass of 25 and 45 mg, the removal
percentage stayed above 80%, reaching a maximum efficien-
cy of 95% (experiment 15) at pH 2. The excellent removal
efficiency of Sb by the MCM-48 (RHA) at pH 2 is due to the
protonation of the silanol and siloxane groups on the surface
of mesoporous architecture, thus causing a good electrostatic
interaction between the protonated groups of the adsorbent
material with the metallic species of Sb (Costa and Paranhos
2019; Costa et al. 2019b, 2020a). On the other hand, the re-
sults obtained showed that the studied material has a good
adsorption capacity in the Sb remediation in solution pH
values ranging between 2 and 10 using a mass greater than
25 mg. As the purpose of applying MCM-48-based mesopo-
rous array is to remove Sb from different water samples, we
understand that there is no need to establish an optimal pH
condition. In this case, we can establish a pH range between 2
and 10 using an adsorbent mass of 45 mg. The no need for pH
adjustment is interesting and increases the frequency of the
analytical method proposed.

In this study, it is also possible to observe that the mesopo-
rous material presents an excellent removal at different Sb
concentration values, mainly in experiments 4, 11–12, 14–
15, and 17–19. This behavior is very interesting because it
shows the versatility of the adsorbent material against differ-
ent pollutant concentration values and a wide range of residual

solution pH. Figure 5 shows the graph of the desirability to the
variables evaluated with the most appropriate condition
marked with a red line. Thus, the established conditions were
as follows: adsorbent mass: 45 mg; adsorption time: 60 min;
pH: ranged from 2 to 10; concentration of the Sb standard:
8 mol L−1. Finally, Table 4 presents a comparison of the re-
moval efficiency of Sb by MCM-48 (RHA) with some adsor-
bent materials presented in the literature. It is possible to ob-
serve that the MCM-48 (RHA) presented a removal percent-
age as good as the values found for adsorbent materials
NaY@C (Yan et al. 2020), TNS (Liu et al. 2021), black soil
(Fan et al. 2020, 2021), NMSH (Deng et al. 2020), Fe-MIL-
88B (Cheng et al. 2020), Bentonite (Xi et al. 2011), and Silica
(Fan et al. 2016).

Application using real samples

The proposed method of adsorption was applied for the Sb
removal in samples of environmental interest, in the case of
this study in water samples. Commonly, the concentration of
Sb in water samples is at a trace level (ppb), in this sense the
samples analyzed were enriched with known concentrations
of Sb. A total of five samples were analyzed and Sb concen-
trations (~8 ppm) were added. These samples were submitted
to the adsorption procedure with the optimized conditions,

Table 2 Matrix of the full factorial design (24) with real and coded values and the response in function of the % removal of Sb

Experiment Variables % Sb removal

pH Adsorption
time (min)

Concentration of Sb
standard (mol L−1)

Adsorbent mass (mg)

1 2 (−1) 5 (−1) 2 (−1) 5 (−1) 24

2 10 (1) 5 (−1) 2 (−1) 5 (−1) 60

3 2 (−1) 115 (1) 2 (−1) 5 (−1) 74

4 10 (1) 115 (1) 2 (−1) 5 (−1) 85

5 2 (−1) 5 (−1) 8 (1) 5 (−1) 55

6 10 (1) 5 (−1) 8 (1) 5 (−1) 76

7 2 (−1) 115 (1) 8 (1) 5 (−1) 74

8 10 (1) 115 (1) 8 (1) 5 (−1) 82

9 2 (−1) 5 (−1) 2 (−1) 45 (1) 80

10 10 (1) 5 (−1) 2 (−1) 45 (1) 84

11 2 (−1) 115 (1) 2 (−1) 45 (1) 89

12 10 (1) 115 (1) 2 (−1) 45 (1) 89

13 2 (−1) 5 (−1) 8 (1) 45 (1) 92

14 10 (1) 5 (−1) 8 (1) 45 (1) 94

15 2 (−1) 115 (1) 8 (1) 45 (1) 95

16 10 (1) 115 (1) 8 (1) 45 (1) 94

17 (CP) 6 (0) 60 (0) 5 (0) 25 (0) 93

18 (CP) 6 (0) 60 (0) 5 (0) 25 (0) 93

19 (CP) 6 (0) 60 (0) 5 (0) 25 (0) 93

CP, central point
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and subsequently, the final aqueous solution was subjected to
analysis by ICP OES. From Eq. 1, it was possible to calculate
the % removal of Sb which varied from 88 to 96%. The ad-
sorbent proposed had no matrix effect in the adsorption

process, and thus confirming that it can be used in the reme-
diation of Sb in water samples.

Conclusions

In this present approach, we carry out the synthesis of MCM-
48-based mesoporous array via an inexpensive, sustainable,
and eco-friendly hydrothermal method using an alternative
silica source extracted from the rice husk ash, which was pos-
teriorly tested as an adsorbent material for the Sb remediation.
The prepared MCM-48 (RHA) array exhibited an amorphous
framework with the N2 adsorption/desorption isotherms of
type IV and type H1 hysteresis, due to the high N2 adsorption
of three-dimensional cubic mesostructure with Ia3d space-
group symmetry, whose SBET, VT, and DBJH values obtained

Table 3 ANOVA table in function of the % removal of Sb with a 95%
confidence level

Parameters SS d.f MS Fcalculated Ftabulated

Regression 5102.0 4 1275.0 51.8 3.1

Residual 57.3 14 4.1

Lack of fit 49.3 2 24.6 6.2 19.0

Pure error 8.0 2 4.0

Total 5159.3 18

SS, sum of square; d.f, degree of freedom; MS, mean of square
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were in the order of 820.9 m2 g−1, 0.6 cm3 g−1, and 3.7 nm,
respectively. In addition, the mesoporous matrix presents a

narrow mesopores distribution and uniform spherical parti-
cles, typical of the architectures with well-defined regular

Table 4 Comparison of removal efficiency

Adsorbent Optimum pH Equilibrium time Sb state Removal efficiency (%) Reference

NaY@Cea 7 720 min Sb(III) Sb(V) 78 74 (Yan et al. 2020)

TNSb 2 30 min Sb(III) 90 (Liu et al. 2021)

Black soilc 3 720 min Sb(V) 80 (Fan et al. 2021)

Black soil 4 35 h Sb(V) 81 (Fan et al. 2020)

NMSHd 7 4 h Sb(V) 99 (Deng et al. 2020)

Fe-MIL-88Be 6 - Sb(III) Sb(V) >90 (Cheng et al. 2020)

Bentonitef 6 ~24 h Sb(III) Sb(V) 90 80 (Xi et al. 2011)

Silicag 3–9 20 min Sb(III) >90 (Fan et al. 2016)

MCM-48 (RHA)h 2 115 min Total Sb 95 Present study

a Cerium hydroxide loaded Y-tape molecular sieve
b Titanate nanosheets
c Black soil sample
dAmino-functionalized hydrothermal biochar modified with nitric acid and nicotinamide
e Iron-based metal-organic framework
f Silicate clay mineral
gMercapto-functionalized silica-supported organic-inorganic hybrid
hMobil Composition of Matter No. 48

Fig. 5 Graphic of profiles of predicted values and desirability in function of the % Sb removal
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channels. Thus, these advanced structural and textural features
significantly influenced the remediation capacity of eco-
friendlyMCM-48 (RHA) to adsorb Sb in an aqueous medium.

The variables of the adsorption procedure of Sb, which
were optimized through a full factorial design (24), proved
the versatility of mesoporous array as an adsorbent metallic
species. The factorial design was useful to find the optimized
conditions using a smaller number of experiments, briefly (i)
the MCM-48 (RHA) exhibited a fast and high adsorption ef-
ficiency at a low concentration of Sb, mainly in the initial
5 min of adsorption (experiments 9 and 10); (ii) the Pareto
graph showed the following decreasing order of significance
for Sb adsorption byMCM-48 (RHA): adsorbent mass > sorp-
tion time > solution pH > Sb standard concentration; (iii)
finally, a maximum Sb removal efficiency of 95% was
achieved at an equilibrium time of 115 min (pH 2) using
45 mg of MCM-48 (RHA) at an initial Sb concentration of
2 mol L−1. On the other side, the MCM-48 (RHA) proved to
be versatile for use as an adsorbent in themost different ranges
of concentration and solution pH.
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