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Abstract: Here, we discuss the effect of In2O3 nanoparticles on the reduced graphene oxide (rGO)
gas-sensing potentialities. In2O3 nanoparticles were prepared with the polymer precursors method,
while the nanocomposites were prepared by mixing an In2O3 nanoparticle suspension with an rGO
suspension in different proportions. The gas-sensing performance of our materials was tested by
exposing our materials to known concentrations of a target toxic gas in a dry airflow. Our results
demonstrate that In2O3 nanoparticles enhance the rGO sensitivity for strong oxidizing species such
as O3 and NO2, while a negative effect on its sensitivity for NH3 sensing is observed. Furthermore,
our measurements towards H2S suggest that the concentration of In2O3 nanoparticles can induce an
uncommon transition from p-type to n-type semiconductor nature when rGO–In2O3 nanocomposites
operate at temperatures close to 160 ◦C.
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1. Introduction

Graphene’s remarkable physical properties justify the emergence of several studies in-
vestigating this material as a sensing material. Its high electronic mobility, intrinsic surface
area, high transparency, and excellent mechanical properties make graphene-based materials
and devices great potentials to develop new technologies [1]. Furthermore, the relativistic
nature of the electronic conduction in graphene and its high surface area has opened several re-
search opportunities to implement these materials as different sensing elements. For instance,
there are significant recent advances in graphene-based sensors for human health monitor-
ing [2], FET-based electrochemical sensors and biosensors [3–5], flexible electronics [6,7], strain
sensors [8–11], and printed electronics [12,13], among other applications.

Within this context, graphene-based gas sensors have been extensively studied in the
recent past [14]. The pioneering work of Schedin et al. [15] demonstrated that pristine
graphene could detect low concentrations of typical pollutants when operating at room
temperature. There are significant achievements worth noting in graphene-based gas
sensors. For instance, they are especially sensitive for nitrogen-reactive species detection
such as nitrogen dioxide (NO2) or ammonia (NH3) [16–21]. Flexible and printed gas sensors
based on graphene derivatives have also been developed with excellent sensitivity [22–25].
One form of graphene that has been especially explored as chemical sensors is the so-called
reduced graphene oxide (rGO). rGO can be depicted as a few layers of graphene-like sheets
piled up with a high density of crystalline defects and a small concentration of oxygenated
groups (-OH, -COOH, C-O-C) bonded to its surface [26,27]. This material can have its most
fundamental physical properties depending on the concentration of the oxygenated groups
remaining from the reduction process of graphene oxide [28]. A redox reaction mediates
the phenomenon of gas detection by semiconductors between the gas and the material’s
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surface. Consequently, the gas-sensing properties of rGO should be strongly dependent on
the reduction process and the remaining oxygenated groups on its surface.

Some recent strategies to tailor and improve these materials’ performance as gas-
sensitive layers are based on combining rGO with other nanostructured materials such as
metal nanoparticles [29,30], quantum dots [31,32], transition metal dichalcogenides [33–36],
and semiconducting metal oxides (SMOx) nanoparticles [37]. Recent work on nanocom-
posites based on rGO-SMOx demonstrated that these materials should achieve high-
performance at a low-temperature range (<150 ◦C). When combined, these materials
form heterojunctions, whose nature depends on the materials used. Frequently, these
hybrid materials exhibit superior gas sensing performances to the materials isolated. For
instance, rGO–WO3 nanocomposites form p–n heterojunctions and perform well for several
gases [38–42]. Some studies have reported rGO–WO3 nanocomposites operating at room
temperature for NH3 [43,44], NO2 [45]. Another rGO–WOx nanocomposite was success-
fully implemented to detect toluene for concentrations as low as one ppm [46]. Zinc oxide
is another SMOx used to elaborate rGO-based nanocomposites for gas sensing applica-
tions. These nanocomposites also demonstrated excellent sensing properties for NH3 [47],
NO2 [48], and H2S [49]. Some important developments regarding ternary nanocomposites
based on rGO, ZnO, and noble metals are also reported. For instance, ternary rGO–ZnO–Au
nanocomposites showed low temperature sensing properties for H2 [50] and VOCs [51].
In this context, Pt can also be used to reduce the operating temperature of these devices,
showing excellent selectivity for H2 at 100 ◦C [52]. More recently, important results ob-
tained by Moon et al. [53] demonstrated remarkable room temperature sensing properties
of flexible sensors based on rGO–ZnO nanocomposites. It is important to note that other
semiconducting metal oxides such as SnO2 [54–56], Cu2O [57], and Co3O4 [58] are also
being extensively studied to form nanocomposites with rGO and exhibiting promising
results. rGO–SMOx nanocomposites have been recently explored with promising results
regarding the detection of volatile organic compounds (VOCs) [59,60].

Among these semiconducting metal oxides, In2O3 is a well-known gas-sensitive
material that has been extensively studied. This material can be grown in different nanos-
tructures [61–64] and exhibits a wide bandgap of 2.9 eV [65]. Some significant efforts to
combine this material with rGO have been fruitful in enhancing its sensing performances.
The work of Andre et al. [66], for example, demonstrated that nanofibers of In2O3 can be
used to prepare rGO-based nanocomposites with higher sensitivity, faster response, and
recovery for NH3 detection. The detection of NO2 by rGO–In2O3 nanocomposites has
already revealed remarkable results at low and room temperature sensing [67,68] and as
flexible sensors [69]. Generally, the processing and fabrication techniques of rGO-In2O3
nanocomposites and rGO–SMOx nanocomposites are typically based on hydrothermal
processes [65–69], because this technique provides an excellent junction between the two
materials. Additionally, it provides a path to control the size and the morphology of
the nanostructured materials. However, such techniques require specific equipment and
further heat treatments to oxidize the SMOx precursors and form the heterojunction.

It is important to note that most strategies to tailor the sensing properties of semiconductor-
based gas sensors are frequently focused on enhancing the sensitivity and decreasing the
response time. However, arguably, the greatest challenge for developing the new generation of
gas sensors based on semiconductor materials is the capacity of a particular material to react
only with a particular gaseous species. In other words, the new generation of gas sensors must
have better selectivity. The selectivity of semiconductor-based gas sensors is poor, and more
experimentation is necessary to assess this particular property of rGO-based nanocomposites.
Here, we propose a simple procedure to synthesize and implement rGO–In2O3 nanocomposites
in gas-sensing devices. To investigate the nature of the interaction between the material and the
gases, we tested our materials for common cross-reactive oxidizing (O3 and NO2) and reducing
gases (NH3 and H2S). A systematic sequence of characterization of these nanocomposites
through X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and
scanning electron microscopy (SEM) materials is presented.
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Furthermore, we show that the performance of such materials towards the detection
of typical pollutants (NH3, H2S, NO2, and O3) can be tailored by controlling the ratio
between rGO and In2O3 nanoparticles. Our results demonstrate that In2O3 nanoparticles
can improve the rGO’s sensing performance towards NO2, which agrees with previous
literature results. Regarding O3 detection, our results suggest that the strong oxidizing
nature of this pollutant promotes a permanent oxidation reaction between the gas and
the rGO as the operating temperature increases. Towards NH3, the addition of In2O3
nanoparticles decreases the sensors’ response and increases its response time. Regarding
the performance for H2S detection, our results highlight that it is possible to induce a
change of the fundamental type of response of the rGO–In2O3 nanocomposites exposed to
this gas. Consequently, the nanocomposites layers could interact with H2S as a p or n-type
semiconductor depending on the operating temperature and the concentration of In2O3
nanoparticles used to fabricate the sensing device.

2. Materials and Methods

A suspension of reduced graphene oxide 10 mg/mL and indium nitrate (In(NO3)3·H2O)
were used as raw materials and were purchased from Sigma Aldrich Brazil. Nanostructured
In2O3 was prepared through the polymeric precursor method. This method is based upon
the formation of metallic complexes using hydrocarboxylic acid followed by a polymeriza-
tion reaction that is promoted by increasing the temperature of this metallic complex in the
presence of a polyalcohol. Here, In2O3 nanoparticles were prepared using indium nitrate as
the precursor, citric acid as a complexing agent, and ethylene glycol for the polymerization
reaction that forms a resin containing In3+ ions. For this reaction, the optimal molar ratio
between citric acid and indium nitrate was 3:1, while the optimal volume ratio between the
citric acid solution and ethylene glycol was 3:2, respectively. The nanoparticles are formed
after a heat-treatment of the resin at 500 ◦C for 1 h. The nanocomposites were prepared
by diluting the rGO suspension in deionized water to 0.1 mg/mL. Similarly, 50 mg of the
In2O3 powder were dispersed in 20 mL of deionized water (2.5 mg/mL). Then, these two
dispersions were sonicated for 30 min and mixed in four different proportions: 0, 5, 15, and
50 v/v% of In2O3 to rGO.

The structural characterization was carried out using conventional θ-2θ X-ray powder
diffraction in a Rigaku Ultima IV diffractometer using Cu-Kα radiation (λ = 1.5418 Å)
and LiF (100) monochromator. The Rietveld refinement was carried out with GSAS-II [70]
and the 3D structure representations with VESTA Crystallography [71]. After exciting
the samples with an Ion-Ar laser beam, the Raman spectra were collected in a Witec
microscope equipped with a Peltier cooled CCD (λ = 514 nm). The sensing materials and
films’ morphology was evaluated with a Zeiss Sigma Field Emission Scanning Electron
Microscope. The SEM images analysis was carried out with ImageJ software [72]. The
surface area ratio between rGO and In2O3 was estimated for each image using contrast
differences, while the nanoparticle size was estimated by measuring the largest dimension
of more than 300 nanoparticles measured from the images.

The chemical state of the surface elements was evaluated using a Scientia Omicron
ESCA spectrometer with a monochromatic X-ray source Al-Kα (1486.7 eV, with a power of
280 W and a constant pass energy mode of 50 eV).

For the gas sensing performance characterization, the nanocomposites dispersions
were drop-casted onto high-density alumina substrates built with screen-printed Pt inter-
digitated electrodes on the upper side and a screen-printed Pt heater on the bottom side.
The electrical measurements and control were carried out in a lab-built experimental setup
that enables complete control of experimental conditions: temperature, flow parameters,
and pollutant concentration. Additionally, this system allows one to record the electrical
resistance data of up to four samples simultaneously measured by the two-probe method
and stored synchronously with the operating conditions. All instruments are controlled by
a lab-made virtual instrument (VI) developed in LabVIEW. The gas sensing behavior was
assessed by continuously monitoring each devices’ electrical resistance upon controlled
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exposure to the gases of interest. Our typical experiments consisted of stabilizing the
devices at constant airflow for 12 h until equilibrium, followed by a step of controlled
exposures (1, 2, 5, and 10 ppm) of sensing devices to H2S, NH3, and NO2. For O3, the expo-
sure concentrations were 250, 500, 750, and 1000 ppb. We compare datasets obtained with
operating temperatures set to 100 and 160 ◦C. In this work, we have defined the sensor’s
response as ∆R/R0 = (Rgas − R0)/R0, where Rgas is the resistance when the devices are
exposed to the target gas, and R0 is the resistance under air. After 12 h of the stabilization
process, the exposure–recovery cycles started after 50 min. For data visualization purposes,
we compare each dataset with the normalized resistance, i.e., the electrical resistance values
divided the value before the first target gas exposure R/R50min.

3. Results
3.1. Structural Characterization

Figure 1 reports a typical Raman spectrum of the rGO used to elaborate the nanocom-
posites. Carbon-based materials exhibit several characteristic Raman vibration modes. The
C-sp2 lattice vibration results in the well-known G-band (~1580 cm−1) present in graphite,
carbon nanotubes, graphene, GO, and rGO. The D-band (~1350 cm−1) results from point
defects vibration and is the most intense peak in GO and rGO-based materials. The D’ band
is the first-order vibration mode of aromatic rings, while the 2D band is the second-order
vibration mode of this structure. In ideal pristine graphene, the free π electrons are all
confined in aromatic rings. Consequently, the relative intensity of this band should be twice
higher than the G band in an ideal graphene sheet [73]. The intensity ratio between the 2D
and G bands is a parameter often used to assess the quality of the rGO-based materials.
Our samples exhibit I2D/IG = 0.28, which is comparable to the quality of rGO according to
the study of Kaniyoor and Ramaprabhu [74].
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Figure 1. Typical Raman spectra of the rGO used in this work. Highlighted peaks in this figure
corresponds to the D (blue), G (pink), D’ (orange), and the second order 2D’. Black peaks represent
other defect activated vibration modes such as D*, D**, D+G. G+D’.

Figure 2 presents an X-ray diffraction pattern for an In2O3 sample prepared by the
polymer precursor method described in Section 3.1 after heat-treating the resin at 500 ◦C.
This oxide crystallizes in a cubic symmetry (space group Ia3). The lattice parameter was
estimated at 1.01 nm through the Rietveld refinement. The refinement converged fast and
yielded a goodness-of-fit of 1.83 and crystallite size estimated at 59 nm. The inset of Figure 2
shows a schematic representation of the typical bixbyite structure of In2O3.



Surfaces 2022, 5 131

Surfaces 2022, 5, FOR PEER REVIEW  5 
 

yielded a goodness-of-fit of 1.83 and crystallite size estimated at 59 nm. The inset of Figure 
2 shows a schematic representation of the typical bixbyite structure of In2O3. 

 
Figure 2. θ-2θ X-ray diffraction pattern of the In2O3 nanoparticles. The inset presents the cubic crys-
tal structure of In2O3. 

3.2. Surface Characterization and Morphology 
Figure 3 depicts SEM images of drop-casted nanocomposites samples. It is possible 

to observe in these micrographs that the amount of these In2O3 nanoparticles increases 
with the sample’s nominal composition. For example, Figure 3a–d show that the amount 
of nominal In2O3 nanoparticles increases from 0 to 50 v/v%. The Image J software [72] was 
used to estimate the surface area ratio between In2O3 nanoparticles and rGO (AIn2O3/ArGO). 
This ratio was calculated for the images in Figure 3b–d and was found to be 20.1%, 29.2%, 
and 46.3%, respectively. These results demonstrate that it is possible to tailor the chemical 
nature of the exposed surface to the atmosphere of such nanocomposites. 

 
Figure 3. Scanning electron microscopy images of (a) rGO and its mixture with (b) 5, (c) 15, and (d) 
50 v/v% of In2O3 nanoparticles suspension. 

Figure 2. θ-2θ X-ray diffraction pattern of the In2O3 nanoparticles. The inset presents the cubic
crystal structure of In2O3.

3.2. Surface Characterization and Morphology

Figure 3 depicts SEM images of drop-casted nanocomposites samples. It is possible
to observe in these micrographs that the amount of these In2O3 nanoparticles increases
with the sample’s nominal composition. For example, Figure 3a–d show that the amount of
nominal In2O3 nanoparticles increases from 0 to 50 v/v%. The Image J software [72] was
used to estimate the surface area ratio between In2O3 nanoparticles and rGO (AIn2O3/ArGO).
This ratio was calculated for the images in Figure 3b–d and was found to be 20.1%, 29.2%,
and 46.3%, respectively. These results demonstrate that it is possible to tailor the chemical
nature of the exposed surface to the atmosphere of such nanocomposites.
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Figure 3. Scanning electron microscopy images of (a) rGO and its mixture with (b) 5, (c) 15, and (d)
50 v/v% of In2O3 nanoparticles suspension.

Figure 4 presents SEM images with higher magnification to better define the morphol-
ogy aspects of our nanocomposites. One can observe three main features in these images.
For instance, Figure 4a shows an agglomerate of In2O3 nanoparticles that are fully exposed
to the atmosphere. Figure 4b shows the formation of regions where In2O3 nanoparticles
agglomerates are partially incorporated into the rGO-layers. Finally, Figure 4c shows a
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region in which the particles are better dispersed into the matrix, exhibiting a great In2O3
area exposed to the atmosphere. The average particle size can be defined as the highest
dimension of a particle, and by measuring these values of more than 300 particles from
the images shown below, it is possible to estimate that the mean particle size of the In2O3
nanoparticles should lie in the vicinity of 34.5 nm after a Gaussian fit, which is in the same
order of magnitude as the crystallite size estimated in the Rietveld refinement.
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Figure 4. Scanning electron microscopy image of samples prepared with (a) 5, (b) 15, and (c) 50 v/v%
of In2O3 nominal compositions. (d) Particle size distribution and a Gaussian fit with an average
particle size of 34.5 nm.

Figure 5 shows the XPS spectra evolution as the amount of In2O3 used in the fabrication
of the nanocomposites increases. It is possible to observe that the intensity ratio of the
peaks related to the In chemical surface states increases as the nominal composition of the
samples increase. The surface atomic concentration of the two In 3d degenerate states are
1.5, 6.4, and 11.3% for the samples with 5, 15, and 50 v/v% of In2O3 nanoparticles. XPS
results are summarized in Table 1.
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Table 1. Analysis of the chemical surface states of the elements.

Nominal Composition
Atomic %

C 1s O 1s In 3d Na 1s S 2p

rGO 73.5 16.9 - 2.4 7.2
5 v/v% In2O3 75.6 15.8 1.5 1.8 5.3

15 v/v% In2O3 69.3 20.1 6.4 1.5 2.7
50 v/v% In2O3 58.1 26.1 11.3 1.4 3.1

Figure 6a–f present typical X-ray photoelectron spectra of the rGO and In2O3 used in
this work separately. Here, it is possible to observe that the rGO survey spectrum shown in
Figure 6a exhibits not only C and O but also signals from Na and S. The presence of Na
and S are related to the chemical route used to prepare this material; S is present due to
oxidation of graphite with sulfuric acid (H2SO4). At the same time, Na is related to the
reducing agents used to reduce the GO, such as sodium borohydride (NaBH4) or sodium
citrate (Na3C6H5O7). The atomic composition of C, O, Na, and S accounts for 76.6, 14.5,
2.8, and 6.1% of this spectrum’s surface’s chemical states. The high-resolution C 1s and
O 1s spectra shown in Figure 6b,c show that the carbon states are related to a massive
presence of C-sp2 (71.1%) and C-sp3 (20.6%). C atoms bonded to O accounts for 8.35% of
the C present on the surface. The high-resolution O spectra show two main components
of O: one is related to O bonded to C, and the other is related to O bonded to S. Weakly
adsorbed oxygenated species such as OH are also present. In this spectrum, O-C, O-S, and
–OH account for 77.8, 15.8, and 6.3%, respectively.
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Figure 6d presents the a typical In2O3 survey spectrum, in which it is possible to
observe peaks related to In 3p 1/2 (~702 eV), In 3p 3/2 (~664 eV), O 1s (~532 eV), C
1s (~284.5 eV), In 3d 3/2 (~451 eV), In 3d 5/2 (~443 eV), and In 4d (~16 eV). The In 3d
peaks are shown in Figure 6e. The high-resolution spectra in the In 3d region shown in
Figure 6e suggest that two chemical states are present in our samples, one assigned to In3+

and another to metallic In. Figure 6f presents the high-resolution spectra of O 1s peak,
exhibiting three major components, assigned to structural oxide ions (O2−) at 530.5 eV, to
weakly adsorbed species at the surface, such as peroxide ions (O−) or hydroxide ions (OH−)
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at 531.8 eV, and C-O bonds from adventitious carbon at 532.9 eV. These O components
account for 51.5, 32.8, and 15.7% of the oxygen states on the surface, which is in agreement
with the literature [75,76].

3.3. Gas Sensing Properties

rGO-based gas sensors are well-known to exhibit high and fast responses towards NO2.
Figure 7a,b present a dynamic response-recovery dataset of four sensors prepared with an
increasing nominal composition of In2O3 nanoparticles to prepare the nanocomposites, as
described in Section 2 of this manuscript. Two features should be noted in these figures.
One is that the In2O3 nanoparticles tend to increase the sensors’ response towards NO2,
which can be explained by the formation of p–n heterojunctions between p-type rGO and
n-type In2O3 [69]. Moreover, the second feature is that the devices’ responses are higher as
the operating temperature increases.
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Similar to what was observed for NO2, the addition of In2O3 nanoparticles also
increased the sensors’ responses towards O3. However, some differences should be un-
derlined. It is possible to observe that the responses of these sensors are independent of
the O3 concentration when operating at 100 ◦C, suggesting that, at this temperature, the
kinetics of the O3 adsorption reaction are low, and the steady-state under our experimental
setup would take a long time. Another possibility is the low lifetime of O3 on the nanocom-
posite’s surface with a fast decomposition into oxygen species. The sensors’ responses
are higher and faster when operating at higher temperatures, as shown in Figure 7d at
160 ◦C. However, samples operating at these conditions tend to exhibit a strong baseline
drift towards higher resistance after each period of recovery. Such behavior is observed
for every In2O3 nanoparticles concentration. It suggests that our nanocomposites react
irreversibly with O3 through an ozonolysis process [77], affecting the rGO matrix. This
phenomenon is activated by including In2O3 nanoparticles acting as a reaction catalyst.
Preliminary XPS results demonstrate that the oxygen surface states can increase to levels
of graphene oxide after exposing an rGO-based nanocomposite to one complete cycle of
electrical resistance variations towards five exposure–recovery cycles of O3 concentrations
between 250 and 1000 ppb.
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Figure 8a,b present a comparison between the sensing behavior of rGO-In2O3 based
sensors towards NH3 controlled exposure at 100 and 160 ◦C. Interestingly, the addition
of In2O3 nanoparticles has a negative impact on the sensing properties of rGO decrease
as the In2O3 nanoparticles’ nominal composition increases. For example, the response
∆R/R0 calculated for pure rGO and rGO-50 v/v%-In2O3 at 10 ppm of NH3 is 15 and
6%, respectively, when operating at 100 ◦C. Similarly, the response decreases when the
operating temperature increases. The response ∆R/R0 for 10 ppm of NH3 is 17% to 9% for
pure rGO when operating at 100 and 160 ◦C, respectively.

Surfaces 2022, 5, FOR PEER REVIEW  10 
 

behavior of the rGO–In2O3 nanocomposites by increasing the operating temperature. Fig-
ure 8d shows the dynamic recovery curves for rGO–In2O3 operating at 160 °C. At this 
temperature, the electrical resistance can be tuned down and even change the nature of 
the interaction between the material and the gas. In other words, the p-type sensing be-
havior observed for rGO in interaction with all gases investigated in this study changes to 
an n-type behavior for rGO–50 v/v%–In2O3 interacting with H2S in temperatures in the 
range of 160 °C. The high density of In2O3 particles at the rGO surface led to this switch in 
the electrical behavior of the sensing device. 

 
Figure 8. Dynamic response–recovery curves from sensors based on rGO-In2O3 nanocomposites to-
wards NH3 at 100 °C (a) and 160 °C (b), and towards H2S at 100 °C (c) and 160 °C (d). 

4. Discussion 
The structural characterization by XRD and Raman spectroscopy show that the ma-

terials used in the synthesis of the nanocomposites consisted of mixing each component 
that had already been prepared previously. Our results demonstrate that this simple tech-
nique can modify the gas sensing properties of the raw materials with a more straightfor-
ward path than the traditional techniques based upon hydrothermal processes. Figures 1 
and 2 show these results. Both figures show an excellent agreement between the structural 
features observed on our materials with results from the literature [43,45,47,48,65–69]. 
Furthermore, the morphology and surface characterization with SEM and XPS demon-
strate that, by changing the proportions between rGO and In2O3, one can change the na-
ture of the surface exposed to the gas, and consequently, change and tune the type of 
solid–gas interaction that takes place for these materials. 

Since rGO is a p-type semiconductor and In2O3 is an n-type semiconductor, increas-
ing the amount of In2O3 nanoparticles in the rGO suspension provides a simple path to 
tune its gas sensing properties. Our results agree with previous literature reports regard-
ing the detection of oxidizing gases, demonstrating that In2O3 can be combined with rGO 
in a synergic manner, increasing the material’s sensitivity and decreasing the response 
time. Additionally, even though samples with high In2O3 concentrations tend to exhibit 
higher ozone sensitivity, our synthesis method did not prevent irreversible chemisorption 
of O3 molecules and the rGO layers. This effect is known as ozonolysis, and the kinetics of 
the degradation of the material is higher as the operating temperature rises. 

Several authors have observed a synergic effect when rGO and In2O3 are applied as 
gas-sensitive nanocomposites for oxidizing species. According to Choi and collaborators 

Figure 8. Dynamic response–recovery curves from sensors based on rGO-In2O3 nanocomposites
towards NH3 at 100 ◦C (a) and 160 ◦C (b), and towards H2S at 100 ◦C (c) and 160 ◦C (d).

Figure 8c,d show the response–recovery data obtained after controlled H2S exposures.
When operating at 100 ◦C, the addition of In2O3 nanoparticles has a similar effect to what
was observed for NH3 (Figure 8a). The response decreases as the In2O3 concentration
increases. An interesting effect can be noted on the gas sensing behavior of the rGO-In2O3
nanocomposites by increasing the operating temperature. Figure 8d shows the dynamic
recovery curves for rGO–In2O3 operating at 160 ◦C. At this temperature, the electrical
resistance can be tuned down and even change the nature of the interaction between the
material and the gas. In other words, the p-type nature observed for all gases interaction
rGO showed in this study undergoes a change to an n-type nature upon interaction with
H2S in temperatures in the range of 160 ◦C.

Figure 8a,b report the sensing behavior of rGO–In2O3-based sensors towards NH3
controlled exposure at 100 and 160 ◦C. Interestingly, the addition of In2O3 nanoparticles
has a negative impact on the sensing properties of rGO towards ammonia. A decrease in
the sensor response is observed as the In2O3 nanoparticles’ nominal composition increases.
Moreover, the response decreases when the operating temperature increases. For example,
the response ∆R/R0 calculated for pure rGO and rGO-50 v/v%-In2O3 at 10 ppm of NH3 is
15 and 6%, respectively, when operating at 100 ◦C. To compare, the response ∆R/R0 for
10 ppm of NH3 is 17% to 9% for pure rGO when operating at 100 and 160 ◦C, respectively.

Figure 8c,d show the response–recovery data obtained after controlled H2S exposures.
When operating at 100 ◦C, the addition of In2O3 nanoparticles has a similar effect to what
was observed for NH3 (Figure 8a), i.e., the response decreases as the In2O3 concentration
increases. Nevertheless, an interesting effect can be underlined on the gas sensing behavior
of the rGO–In2O3 nanocomposites by increasing the operating temperature. Figure 8d
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shows the dynamic recovery curves for rGO–In2O3 operating at 160 ◦C. At this temperature,
the electrical resistance can be tuned down and even change the nature of the interaction
between the material and the gas. In other words, the p-type sensing behavior observed for
rGO in interaction with all gases investigated in this study changes to an n-type behavior
for rGO–50 v/v%–In2O3 interacting with H2S in temperatures in the range of 160 ◦C. The
high density of In2O3 particles at the rGO surface led to this switch in the electrical behavior
of the sensing device.

4. Discussion

The structural characterization by XRD and Raman spectroscopy show that the mate-
rials used in the synthesis of the nanocomposites consisted of mixing each component that
had already been prepared previously. Our results demonstrate that this simple technique
can modify the gas sensing properties of the raw materials with a more straightforward path
than the traditional techniques based upon hydrothermal processes. Figures 1 and 2 show
these results. Both figures show an excellent agreement between the structural features
observed on our materials with results from the literature [43,45,47,48,65–69]. Furthermore,
the morphology and surface characterization with SEM and XPS demonstrate that, by
changing the proportions between rGO and In2O3, one can change the nature of the surface
exposed to the gas, and consequently, change and tune the type of solid–gas interaction
that takes place for these materials.

Since rGO is a p-type semiconductor and In2O3 is an n-type semiconductor, increasing
the amount of In2O3 nanoparticles in the rGO suspension provides a simple path to tune
its gas sensing properties. Our results agree with previous literature reports regarding the
detection of oxidizing gases, demonstrating that In2O3 can be combined with rGO in a
synergic manner, increasing the material’s sensitivity and decreasing the response time.
Additionally, even though samples with high In2O3 concentrations tend to exhibit higher
ozone sensitivity, our synthesis method did not prevent irreversible chemisorption of O3
molecules and the rGO layers. This effect is known as ozonolysis, and the kinetics of the
degradation of the material is higher as the operating temperature rises.

Several authors have observed a synergic effect when rGO and In2O3 are applied
as gas-sensitive nanocomposites for oxidizing species. According to Choi and collabora-
tors [78], the NO2 sensing is highly dependent on hydroxyl groups remaining on the rGO’s
surface. Hence, when rGO is combined with In2O3 nanostructures, NO2 molecules react
with p-type rGO and n-type In2O3. However, in these hybrid materials, the depletion
layer formed on the In2O3 nanoparticles expands and increases the potential barriers of
conduction charges in the rGO matrix, leading to higher electrical resistance variations
upon interaction with the same gas concentration [68,69]. Even though there are no stud-
ies regarding the mechanisms for O3 sensing of rGO–In2O3 nanocomposites, our results
suggest that the mechanism of the reaction is composed of two processes: (1) a reversible
adsorption of O3 molecules on the surface leading to adsorbed O− or O2− into the sensing
layer and irreversible chemisorption of O3 molecules leading to the break of carbon-carbon
double bonds of the rGO matrix responsible of the slow degradation of the sensing material
with successive ozone exposures.

Similar to what is observed for NO2 detection, the interaction between NH3 and
rGO-based materials is strongly dependent on the rGO’s remaining surface oxygenated
groups. Furthermore, the interaction rate between In2O3 nanoparticles and NH3 occurs
at higher operating temperatures [79]. Consequently, the addition of In2O3 nanoparticles
when the devices operate close to 160 ◦C decreases the active surface area towards NH3 and
decreases the device’s response. Therefore, we can interpret that the interactions of NH3
molecules on rGO-In2O3 nanocomposites are more localized on rGO matrix. Consequently,
as the In2O3 nanoparticles reduce the rGO surface area, the available active sites density for
NH3 adsorption decreases. Therefore, towards NH3, SMOx does not act as a catalyst. It is
also important to note that the NH3 detection mechanism is strongly dependent on traces
of humidity present in the air [80]. Consequently, our devices’ responses can decrease as
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the operating temperature increases because the level of humidity tends to decrease at
higher temperatures.

Regarding the H2S detection, one of the most important results from our measurements
demonstrated that adding an n-type SMOx semiconductor to a p-type rGO matrix can
induce a p-to-n-type transition of the rGO–In2O3 nanocomposites when interacting with
H2S at a higher temperature. This effect is a consequence of both materials being active
towards H2S detection [81–83]. In other words, as the n-type In2O3 active surface increases,
the overall sensor’s response decreases because the net measured signal is the sum of
the rGO p-type interaction and In2O3 n-type interaction with the H2S gas. The response
decreases up to a threshold value, in which there is more H2S molecules interaction
with In2O3 than with the original rGO surfaces, which explains the observed transition.
This effect is temperature dependent because the number of free carriers in the In2O3
nanoparticles increases more rapidly over temperature than the density of holes in the rGO
matrix achieving a global n-type behavior.

While such microsensors are insensitive to gaseous species not involving redox re-
actions with the sensing nanocomposite (such as BTEX), they remain not selective to one
of the target pollutants. Nevertheless, it remains possible to identify the nature of the
pollutant present in the probing gaseous phase using two identical microsensors working
at two different temperatures. Figure 9 shows the response of two sensors prepared with
rGO–50 v/v%–In2O3. The curves shown in the left panels are related to the signals from
a sensor operating at 100 ◦C, while the curves at the right panels are the signals deliv-
ered by the sensor operating at 160 ◦C. As can be seen in this figure, the interaction with
H2S produces a positive electrical resistance variation on the sensing element operating
at 100 ◦C (Figure 9a), while a negative electrical resistance variation is observed for the
sensing element operating at 160 ◦C (Figure 9d). On the other hand, a positive variation of
the electrical resistance in both sensing elements indicates that the devices interact with
NH3. If both elements exhibit a decrease in electrical resistance, the target gas must be NO2.
The recognition method is based on studying the various function of the resistance during
a few seconds of sensor exposure to gas. Table 2 summarizes how H2S, NH3, or NO2 can be
discriminated by this method. Once the gas has been identified, the microsensors exhibiting
the best sensing performances can be used to quantify gas concentration. Consequently, our
measurements open new perspectives for studying rGO–SMOx-based gas sensors in the
multi-sensor array or electronics nose context [84], since rGO–In2O3 nanocomposites could
readily differentiate these two common cross-reactive species [85]. Additionally, a further
experimental investigation is necessary to assess the influence of environmental humidity
on the gas sensing properties of rGO–SMOx nanocomposites and to further comprehend
the reaction mechanism towards both NH3 and H2S.

Table 2. Variation function of microsensor resistance during exposure step to gases for 2 different
working temperatures. The gas can be identified from the sign of resistance variations.

R(rGO/In2O3) during Gas Exposure
Gas Identified

@ 100 ◦C @ 160 ◦C

↗ ↘ H2S
↗ ↗ NH3
↘ ↘ NO2
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5. Conclusions

This manuscript described a systematic study on the gas sensing properties of rGO-
In2O3 nanocomposites. Our results demonstrated that the electrons from the n-type In2O3
nanoparticles make the rGO matrix more sensitive towards oxidizing gases such as NO2 and
O3, which agrees with the literature for these nanocomposites. Regarding the O3 detection,
it is critical to note that the strong oxidative nature of O3 can permanently react with rGO
when the devices are operating at temperatures of 160 ◦C. Regarding the interaction of the
rGO–In2O3 nanocomposites with reducing gases, our results strongly suggest that NH3
reacts preferably with the rGO layers, since the reactivity of such nitrogenated species
(NO2 and NH3) are strongly dependent on the remaining oxygenated groups on the rGO’s
surface. On the other hand, the interaction with H2S occurs at the p-type layers of rGO
and the n-type In2O3 nanoparticles. In other words, there is a competitive phenomenon
between the free adsorption sites at the rGO layers and the In2O3 nanoparticles. For
instance, at lower temperatures, the H2S molecules would find more adsorption sites on
the rGO layers than on the In2O3 nanoparticles, because the carrier density of In2O3 at
low temperatures is low. On the other hand, as the In2O3 nanoparticles concentration
and the operating temperature increase, the number of free electrons available to interact
with the gas also increases. Consequently, the measured electrical resistance would be a
consequence of the net interaction of the gas and the type of adsorption sites available to
be adsorbed. Regarding research perspectives, this work has demonstrated the need for
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further experimental efforts to prepare and investigate the sensing behavior of samples
with higher concentrations of In2O3 nanoparticles on the rGO matrix. Additionally, it
is necessary to investigate if similar p-to-n transitions are observed when other SMOx
such as SnO2, WO3, and ZnO are used to prepare the nanocomposites. Moreover, further
experimentation is also necessary to shed light on ambient humidity’s role and influence in
the mechanism of H2S detection.
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