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A B S T R A C T   

Nb2O5/TiO2 heterostructure was prepared using the microwave-assisted hydrothermal method and characterized 
by different techniques. The sample was submitted to a photocatalytic degradation test using the discoloration of 
rhodamine B under UV-C irradiation for 90 min as a marker. Nb2O5/TiO2 showed an improvement in the 
photocatalytic benchmark compared to Nb2O5, to which it was possible to discolor 100% rhodamine B by 
essentially a 10% superior output. The samples showed good chemical stability after four different reuse cycles. 
In addition, the positive charges h+ were distinguished as the active species that most influenced the photo-
catalytic performance of the material.   

1. Introduction 

The incorrect dumping of pollutants by industries in waterbodies 
directly affects the environment [1,2]. Among the discarded pollutants, 
we can mention heavy metals [3–5] and organic dyes used by the paint 
and cellulose industries [1,6,7]. Several technologies have been used for 
the removal of pollutants found in effluents, such as adsorption [8], 
heterogeneous photocatalysis [9], membrane separation [10] among 
others [11]. Heterogeneous photocatalysis is a widely used method that 
involves the activation of a semiconductor material, originating from 
pairs of photogenerated charges (electrons/holes - e− /h+) that are 
fundamental to generate radicals with high oxidation power that will be 
used in the degradation of compounds. organic [12,13]. 

Niobium pentoxide (Nb2O5) is a semiconductor that has great po-
tential for application in heterogeneous photocatalysis due to its inter-
esting characteristics, such as low cost, ease of obtaining, good chemical 
stability, and wide band gap variations [12,14,15]. However, after 
excitation of the electron-hole pairs, the semiconductor can present a 
high recombination rate, limiting its application in photocatalytic pro-
cesses [16,17]. To improve its photocatalytic behavior, the merging of 
Nb2O5 with another semiconductor material can be an alternative in 
combination, known as heterostructures [18]. This kind of architecture 
favors the material’s charge segregation and may improve the electronic 

evolution [19]. Like Nb2O5, titanium dioxide (TiO2) also exhibits reli-
able chemical stability as a catalyst, with several well-established ad-
vantages [20]. In this sense, a mixture of two oxide semiconductors, 
such as these, may be a good alternative for use in photocatalytic pro-
cesses to enhance the photocatalytic yield. 

The synthesis method to obtain the material can influence the 
properties of nanoparticles. Microwave-assisted hydrothermal (MAH) 
synthesis is an effective method for obtaining heterostructures, making 
it possible to acquire homogeneous and uniform materials at low tem-
peratures and in less time of synthesis when compared to other methods 
[21,22]. The MAH method has been used to obtain heterostructures 
involving TiO2 [23,24] and other systems [25–28]. In different works, 
heterostructures involving Nb2O5 synthesized by the conventional hy-
drothermal method [16,29], sol-gel [30,31], freeze-drying [32], among 
others [33–35] have been found, but not by the MAH method. 

Therefore, in this study, we obtained pure Nb2O5 and the Nb2O5/ 
TiO2 heterostructure notably faster through the MAH method and 
administered the materials in heterogeneous photocatalysis tests by 
checking the discoloration of the rhodamine B (RhB) dye over time. 

2. Materials and methods 

To obtain Nb2O5, NbCl5 (CBMM) was dissolved in 25 mL of distilled 
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water under constant stirring. Hydrogen peroxide (molar ratio Nb:H2O2 
was 1:10) was added to the solution, deposited in the microwave reac-
tion cell, and locked up afterward. The synthesis was carried out at a 
constant temperature of 140◦C for 15 min. The resulting material was 
washed with distilled water and centrifuged to neutralize the pH before 
the precipitate was oven-dried at 100◦C for 12 h. For the Nb2O5/TiO2 
synthesis, two solutions were prepared. First, 0.01 mol of titanium iso-
propoxide was dispersed in 30 mL of ethanol under constant stirring for 
10 min. A second solution was prepared, in which 0.01 mol of the ob-
tained Nb2O5 was dispersed in 20 mL of ethanol. The two solutions were 
mixed and transferred to the reaction cell with the synthesis parameters 
set equal to those for the Nb2O5 synthesis. 

X-ray diffraction (XRD) analysis was performed using an X-ray 
diffractometer Bruker (D8 Advance) with CuKα radiation (λ=1.5418 Å). 
Scanning electron microscopy (SEM) was performed on a JEOL JSM- 
6610 LV system operating at 15 kV. Transmission electron microscopy 
(TEM) analysis was performed on a JEM-2100F scanning electron mi-
croscope (JEOL, Japan) with a field emission gun (FEG) and an energy- 
dispersive X-ray spectrometer (EDS) operating at 200 kV. FTIR was 
obtained with an IR-Prestige (Model 21, Shimadzu, Japan). The diffuse 
reflectance spectra were obtained by a UV–Vis spectrometer (Varian 
Cary 5000, USA), and the optical band gap of the samples was estimated 
by the Wood and Tauc model. Photoluminescence measurements were 
carried out using a 355 nm laser (Cobolt/Zouk) with the signal detected 
by a Si-CCD detector (Andor Kymera/Idus). 

The photocatalytic process for the samples was analyzed by 
measuring the discoloration of the RhB [C28H31CIN2O3] dye in the 
aqueous solution. For the experiment, 50 mg of the powder was mixed 
with 50 mL of RhB (1 × 10− 5 M) dye under constant stirring to form a 
solution. The tests were performed in a sealed box under the illumina-
tion of five UV-C lamps (15 W each lamp - TUV Philips; maximum in-
tensity at 254 nm) and at a temperature of 25◦C. First, all samples were 
stirred for 15 min in the dark to stabilize the adsorption-desorption 
equilibrium between the dye and the catalyst. Aliquots were taken at 
15 min intervals over the experimental duration of 90 min. All the 
samples were centrifuged to remove the particulates, and the superna-
tant was analyzed via UV–vis spectroscopy. 

3. Results and discussion 

The photocatalytic activities of Nb2O5 and Nb2O5/TiO2 were evalu-
ated by discoloration of RhB, according to Fig. 1 (a). The heterostructure 
Nb2O5/TiO2 showed greater discoloration when compared to Nb2O5, in 

which 90 min it was possible to discolor 100% of RhB, while for Nb2O5 it 
was observed 91%. For comparison, the discoloration behavior of RhB 
was evaluated using the semiconductor TiO2 synthesized by the same 
synthesis method (MAH). TiO2 showed a very similar behavior to 
Nb2O5, where in 90 min, it was able to discolor approximately 88% of 
RhB, but it presented a lower result than the heterostructure. This result 
shows that the junction of the two materials (Nb2O5/TiO2) allows an 
improvement in the photocatalytic activity through better efficiencies 
than in relation to the semiconductors alone. 

The reaction rate constant (k) of the photocatalytic discoloration 
process was calculated using the Langmuir-Hinshelwood kinetic 
method. The kinetic fitting results are shown in Fig. 1 (b), which is in 
line with a pseudo-first-order reaction. The k values were 0.00174 cm− 1 

for RhB without catalyst, 0.02419 cm− 1 for TiO2, 0.02693 cm− 1 for 
Nb2O5, and 0.4195 cm− 1 for Nb2O5/TiO2. 

The difference in the behavior of the samples can be related to the 
crystalline phase of the materials, as shown in Fig. 2 (a). The Nb2O5 
obtained at low temperatures presented the low crystallinity of the 
pseudohexagonal (TT) phase, according to JCPDS card no. 28-0317, 
with reference peaks at 22.7◦, 26.6◦, 34.8◦, 46.4◦, and 55.6◦. For the 
Nb2O5/TiO2 sample, the diffraction peaks took place at 25.3◦, 37.8◦, 
47.8◦, 53.7◦, 55.1◦, and 62.7◦, which is in line with the TiO2 anatase 
phase, according to JCPDS card no. 21-1272 mixed with the pseudo-
hexagonal phase of low crystallinity of Nb2O5. TiO2 is a semiconductor 
material widely used in photocatalysis [36]. Therefore, the mixing of the 
phases favors the photocatalytic activity, since the mixture of nano-
structured oxides can help in more efficient separation of the photo-
generated charges because they present a broader light absorption 
range. Additionally, the heterostructure presented more agglomeration 
of particles than Nb2O5, which may favor the photocatalytic process due 
to a lower recombination rate, according to Fig. 2 (c) [37]. Nb2O5 (Fig. 2 
(b)) has homogeneous particles with similar sizes and shapes forming 
particle aggregates, which are characteristic of the synthesis method 
(MAH) due to the low temperature and short synthesis time [21]. In the 
Nb2O5/TiO2 sample, it is possible to verify the presence of smaller 
particles, characteristic of TiO2, aggregated together with the Nb2O5. 

This can be confirmed by the TEM images, as shown in Fig. 3. The 
image depicted in Fig. 3 (a) presents atoms organized in nanocrystalline 
domains in which no long-order arrays of atoms can be perceived. This 
situation is in line with the expected situation for the Nb2O5 nano-
particles synthetized at lower temperatures and not subjected to poste-
rior heat treatments [38]. In Fig. 3 (b), the TEM image presents the 
coexistence of the distinct materials in such a way that the crystalline 

Fig. 1. (a) Photocatalytic activities performance; (b) − ln(C/C0) vs. time curve.  
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arrays for the anatase phase presented in cross-Sections 1 and 2 are fully 
integrated into the Nb2O5 nanocrystalline clusters with the formation of 
the niobium matrix on the edge of the TiO2 crystallites [39]. Such an 
arrangement may suggest that during the process of synthesis, the TiO2 
and Nb2O5 seeds precipitated at distinct stages since the interface within 
the materials completely isolates the two stoichiometries with no pres-
ence of small arrays of one coexisting within the other. In addition, it 
became evident that the most visible planes for the anatase phase of TiO2 
were the (101) and (200). In addition, both the quantity and arrange-
ment of such orientations denote that the crystallite domains are rela-
tively small, although in line with the expected synthesis at this 
temperature [40]. 

Another factor that can influence the photocatalytic performance of 
a material is the presence of -OH groups [12,41]. FTIR analysis can be 
used to demonstrate the higher performance of Nb2O5/TiO2 in relation 
to Nb2O5, as shown in Fig. 4 (a). The bands in the regions of 3600 and 
3000 cm− 1 are related to the adsorption of water molecules, and the 
band at 1630 cm− 1 corresponds to Ti-OH vibrations [42]. The intensity 
of these bands is higher for Nb2O5/TiO2 than for Nb2O5, which justifies 

the better photocatalytic performance of the heterostructure, since there 
was a greater hydroxylation on the surface of the material [43,44]. In 
addition to these peaks, there are peaks at 1730 cm− 1, corresponding to 
the angular vibration of water molecules, and at 1370 and 1218 cm− 1, 
attributed to the adsorption of O2 species on the niobium surface [45]. 
Peaks with low intensity can be seen in bands smaller than 900 cm− 1, 
which are related to typical Nb-O bonds [46]. 

The band gap can also influence the photocatalytic performance. 
Fig. 4 (b) and (c) show the band gap of the samples, estimated using the 
Wood and Tauc model for indirect semiconductors (αhv)0.5 vs hv, where 
α is the absorption coefficient and hν is the photon energy in eV. In this 
analysis, the heterostructure band gap decreased to 3.4 eV compared to 
the pure Nb2O5 sample, which has a band gap of 3.6 eV. This can be 
attributed to the energies involved in the electronic transitions due to 
the influence of the TiO2 nanoparticles, which generally present 3.2 eV 
as a band gap. These data corroborate the photocatalysis result found in 
this work, since the Nb2O5/TiO2 sample presented a smaller band gap 
value than the Nb2O5 sample, being able to absorb more light, and 
consequently, improve the photocatalytic performance. 

Fig. 2. (a) XRD of the samples: (1) Nb2O5 and (2) Nb2O5/TiO2; (b) SEM image of Nb2O5; (c) SEM image of Nb2O5/TiO2.  

Fig. 3. (a) TEM image for Nb2O5; (b) TEM image for the heterostructure Nb2O5/TiO2 with cross-sections zoomed out.  
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The improved photocatalytic performance of Nb2O5/TiO2 in relation 
to Nb2O5 can also be explained by the photoluminescence spectra 
through the study of the photogenerated charge recombination process 
of the samples. The spectra of both samples were similar, according to 
Fig. 4 (d), with two emission peaks centered at 489 and 533 nm, indi-
cating that recombination occurs through a multiphonon process be-
tween states located in the band gap of the material, which results in 
broadband emission [38,47]. The Nb2O5 sample exhibited an emission 
of luminescence with greater intensity, while the Nb2O5/TiO2 hetero-
structure showed a decrease in intensity. The decrease in hetero-
structure intensity indicates that the addition of TiO2 inhibits the charge 
recombination process, which favors the performance of the photo-
catalyst, improving the photocatalysis process [48,49]. 

After justifying the photocatalytic performance of the samples, the 
chemical stability was analyzed by catalyst reuse over four cycles (Fig. 5 
(a) and (b)). After four cycles, both samples showed stability, with 
performance above 92%, indicating that Nb2O5 and Nb2O5/TiO2 were 
considered stable and highly efficient photocatalysts. To identify the 
active species in the photocatalytic process, isopropyl alcohol (C3H8O), 
silver nitrate (AgNO3), and disodium ethylenediaminetetraacetate 
(EDTA) were used as scavengers for ⋅OH, negative charges (e− ) and 
positive charges (h+), respectively. Fig. 5 (c) shows the results of adding 
scavengers over Nb2O5 under UVC irradiation. The addition of EDTA, 
referring to positive charges h+, causes a decrease in the photocatalytic 
efficiency of RhB discoloration when compared to the sample without 
the addition of scavengers, indicating that h+ was the main active spe-
cies during the photocatalysis process. The C3H8O also showed a 
decrease in photocatalytic performance, but more subtly, suggesting 
that ⋅OH, even though not the main active species, also helps in the 
discoloration process of RhB dye. In contrast, the addition of AgNO3 

showed an increase in photocatalytic performance when compared to 
Nb2O5 without the addition of scavenger, suggesting that the restriction 
of e− leaves a greater number of h+ available to act in the oxidation of 
the dye. The same behavior was seen for the Nb2O5/TiO2 sample, as 
shown in Fig. 5 (d), where h+ and ⋅OH were the active species that 
played the most positive role in the photocatalysis process. 

The proposed mechanism to evaluate the photocatalytic activity of 
the heterostructure is shown below. The valence bands (VB) and con-
duction band (CB) of semiconductors are important to understand the 
photocatalytic mechanism. VB and CB can be calculated by Eqs. (1) and 
(2) [50,51], where EVB and ECB are the VB and CB edge potentials of the 
semiconductors, Ee is the energy of free electrons on the hydrogen scale 
(4.5 eV vs NHE – normal hydrogen electrode), X is the average absolute 
electronegativity (x) of each semiconductor atom (xNb = 4.0 eV, xO =

7.54 eV, xTi = 3.45 eV) [52], and Eg is the band gap of the semi-
conductors (3.6 eV for Nb2O5 and 3.2 eV for TiO2). 

EVB = X − Ee + 0.5Eg (1)  

ECB = EVB − Eg, (2) 

Thus, the calculated values were ECB= -0.01 eV and EVB= 3.59 eV for 
Nb2O5 and ECB= -0.29 eV and EVB= 2.91 eV for TiO2. 

Through the results, the possible S-scheme mechanism of RhB dye 
discoloration is proposed, according to Fig. 6. With the formation of the 
heterostructure, changes occur in the photogenerated charge transfer 
process, where Nb2O5 has a more positive VB and CB than TiO2. This 
shows that heterostructures make a greater contribution from the 
availability of tools to the photocatalysis process than do materials that 
are not heterostructures. When the heterostructure is then excited by 
photons with energy equal to or greater than the band gap of the 

Fig. 4. (a) FTIR spectra of the samples: (1) Nb2O5 and (2) Nb2O5/TiO2; (b) band gap energy of Nb2O5; (c) band gap energy of Nb2O5/TiO2; and (d) PL spectra of 
the samples. 
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material, electron/hole pairs (e− /h+) are generated. In this case, it is 
believed that the photogenerated e− in Nb2O5, which has a lower 
reduction capacity, recombine with the photogenerated h+ in the TiO2 
semiconductor, which has a lower oxidation potential, causing the 
oxidation and reduction reactions to take place in the semiconductor 
TiO2. materials that have greater oxidizing and reducing capacities 
[53–57]. This mechanism of e− transfer from the CB of Nb2O5 to the VB 
of TiO2 is suggested by having a system that has many intermediate 
states, which makes it possible to receive the photogenerated e− . The 
intermediate states are characteristic of the material’s crystallization 

through the MAH synthesis method and can be confirmed by the PL 
result. Thus, according to the scheme of Fig. 6, the e− photogenerated in 
TiO2, which has a higher reduction potential, can reduce the oxygen 
adsorbed into a superoxide radical, since it has a more positive potential 
than the reduction potential of O2/ O2

′ (-0.13 eV vs NHE) [58]. The h+

photogenerated in the VB of Nb2O5 reacts with the adsorbed water, 
forming HO∗and H.. radicals, due to having a more positive potential 
than 1.99 eV vs NHE, related to OH′ /HO∗, are also more positive than 
2.34 eV vs NHE, related to the potential of H2O/HO∗ [58,59]. The HO∗

radicals that have high oxidizing power react with the RhB dye, 
degrading into intermediate products, according to the author’s pub-
lished work [12]. 

Even though the semiconductors used in this work are well-known 
and widely used materials, the heterostructure of these two com-
pounds has not yet been well explored, especially in heterogeneous 
photocatalysis processes. Some works approach the mixture of Nb2O5 
with TiO2 and apply it to the degradation of other organic compounds 
[20,60]. Table 1 presents a summary of works that explored the use of 
heterostructures based on Nb2O5, which were used to evaluate the 

Fig. 5. (a) Recycling experiment for Nb2O5, (b) recycling experiment for Nb2O5/TiO2, (c) RhB dye concentration variation using scavengers for Nb2O5, and (d) for 
Nb2O5/TiO2. 

Fig. 6. Possible charge transfer mechanism.  

Table 1 
Comparison of the photocatalytic performance of the Nb2O5 heterostructure.  

Heterostructure Dye Time Light % Degradation Refs. 

Nb2O5/TiO2 RhB 90 min UVl 100% This work 
Nb2O5/TiO2 MB 150 min Visible 84% [61] 
g-C3N4/ Nb2O5 RhB 180 min Visible 79% [62] 
g-C3N4/ Nb2O5 RhB 210 min UV ~80% [63] 
Nb2O5/SnO2 RhB 180 min UV ~80% [64] 
CeO2/Nb2O5 MB 150 min UV ~80% [65] 
TiO2/ Nb2O5 ACT - Visible 90.6% [30]  
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degradation of known dyes, such as RhB and MB. One of our great dif-
ferentials in relation to the others mentioned is the method of obtaining 
the heterostructure, which was all through MAH synthesis. From the 
results, we were able to see that this method makes it possible to obtain a 
heterostructure of Nb2O5/TiO2 with a high discoloration capacity of the 
RhB dye, proving to be competitive in relation to the others. 

4. Conclusion 

The Nb2O5/TiO2 heterostructure was obtained in a simple and fast 
way through the microwave-assisted hydrothermal method. Nb2O5 has 
the characteristic of presenting low crystallinity of the pseudohexagonal 
phase at lower temperatures, and, together with TiO2, it presented a 
mixture with the anatase phase. The formation of Nb2O5/TiO2 showed 
the formation of smaller particles on the surface of Nb2O5, which 
favored the photocatalytic activity of this material when compared to 
Nb2O5, where 90 min of analysis allowed the discoloration of 100% of 
RhB. Additionally, h+ was the active species that most positively influ-
enced photocatalysis for both samples. This indicates that the hetero-
structure synthesized under the conditions of this work proved to be a 
material with interesting properties for application in photocatalysis 
processes. 
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