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Abstract
In this study, heat measurements were used to investigate the influence of three initiators on the chain-growth mechanisms 
of polyacrylamide/carboxymethylcellulose/nanoclay nanocomposite hydrogels. All the matrices had highly interconnected 
porous surfaces with intercalated configurations. Swelling degree measurements were conducted to investigate the effect 
of the various formed chains on the physicochemical properties of these matrices. According to the findings, hydrogels 
synthesized using a potassium persulfate initiator had the highest water absorbency (around 40.8 ± 0.8 g.g^−1), followed 
by those synthesized using sodium persulfate (38.1 ± 1.0 g.g^−1) and ammonium persulfate initiators (34.8 ± 0.7 g.g^−1). 
The nanoclay-containing nanocomposite had a similar water absorption tendency. Additionally, all the nanocomposites 
had a lower swelling degree than pure hydrogel because nanoclay acted as a physical crosslinker in the polymeric matrix, 
decreasing the chain elasticity and water sorption ability. Different physicochemical properties were then generated due to 
the difference in polymerization mechanisms. Chain combination was the preferred termination mechanism for the polym-
erization of the hydrogel with the highest water absorbency. It was also plausible to assume that chain transfer reactions 
favored the termination mechanisms of the polymerization of the nanocomposites synthesized using NaPS and APS initia-
tors, generating polymeric chains with low molecular weight and reducing the water absorption capacity. The insertion of 
nanoclay inhibited the start of the polymerization initiation step by preventing the initiator from attacking the monomer. 
Thus, a better understanding of the interaction between the initiators and hydrogel components can aid in the synthesis of 
hybrid nanocomposites with desirable characteristics and properties.
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Introduction

Hydrogels have attracted significant attention for the devel-
opment of several matrices for different applications, such 
as agricultural [1–3], medical [4, 5], and engineering [6, 7] 
fields, because of their unique properties, including biodeg-
radability, biocompatibility, high hydrophilicity, and low-
cost production. Vinyl-based monomers are the most com-
mon monomers used in hydrogel preparation [8, 9]. Since 
this polymerization reaction is generally initiated by heat or 

ultraviolet radiation [10], controlling it remains a difficult 
task.

Several composite or nanocomposite hydrogel formula-
tions have been studied using a combination of natural or 
synthetic polymers and zeolite or nanoclay structures [11, 
12]. The main goal of this interesting strategy is to maxi-
mize the synergic properties of the individual components 
in the final matrix, which may improve some unfavorable 
characteristics and consequently increase the possibility of 
their applications.

Chitosan, starch, alginate, lignin, carrageenan, pectin, and 
cellulose derivatives are some of the polysaccharides used in 
hydrogel synthesis [13–15] because of their interesting proper-
ties, such as biocompatibility, biodegradability, antimicrobial 
property, nontoxicity, and other functional properties [7]. Car-
boxymethylcellulose (CMC) is one of the most investigated 
cellulose derivatives because it possesses unique hydrophilic 
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properties due to the carboxylate groups present in its back-
bone [16], as well as interesting characteristics such as sensi-
tivity to external stimuli. This environmental response is very 
desirable for diverse applications, such as controlled release 
systems for agricultural, medical, or food applications.

Polyacrylamide (PAAm) is one of the most appropriate sup-
port matrices used in nanoclay-based hydrogel nanocomposites 
[17]. In addition to their facile, low-cost, and reproducible syn-
thesis parameters and their wide applicability in various fields, 
such as drug delivery [18], agricultural inputs [19, 20], and water 
treatments [21], one of the main reasons for their use is that the 
amino groups along their chain can form hydrogen bonds with 
the nanoclay functional groups [22]. These interactions aid in 
the stabilization of nanostructures because of their anchoring.

Incorporating inorganic materials, such as nanoclays, 
particularly cloisite-Na+ (Clt-Na+), into polyacrylamide and 
polyacrylate networks helps improve the final properties of 
these matrices, such as swell capacity, mechanical resist-
ance, and thermal stability [23, 24]. Clt-Na+ minerals have 
a sheet-like structure composed of tetrahedrally arranged 
silicate and octahedrally arranged aluminate groups, which 
form platelets that are bound together by van der Waals 
forces [25].  Na+ cations, which counteract the negative 
charges on the surface of their layers, are found in their gal-
leries [26]. It has been widely studied because of its excel-
lent properties, such as water adsorption capacity, cation 
exchange, and high specific surface area [27].

The objective of this study was to investigate the influence of 
the sodium persulfate (NaPS), potassium persulfate (KPS), and 
ammonium persulfate (APS) initiators on the chain-growth mech-
anism of hydrogels made from polyacrylamide (PAAm), CMC, 
and nanoclay Clt-Na+ and how it affected the swelling degree 
(SD) of these nanocomposites. The hydrogel structure was char-
acterized using Fourier-transform infrared spectroscopy (FTIR), 
X-ray diffraction (XRD), and scanning electronic microscopy 
(SEM) techniques. Although the influence of several initiators 
on the formation and the properties of hydrogels has already been 
reported [28–31], to the best of our knowledge, there is a lacune of 
understanding of how the type of initiator affects the chain-growth 
mechanism. For instance, Zhang et al. [28] investigated the redox-
polymerization mechanisms of polyacrylamide hydrogels. They 
concluded that the use polyetheramine initiator could promote a 
more homogeneous distribution of crosslinking points and energy 

dissipation, improving mechanical properties. Bel’nikevich et al. 
[29] studied the gelation kinetics of novel poly(acrylic acid) 
hydrogels crosslinked using two different ammonium persulfate 
initiator systems. The effect of the initiator systems used in the 
acrylamide and their derivatives on the gel inhomogeneity was 
firstly reported by Orakdogen and Okay [30]. In this way, the 
main objectives of these references focus on the characterization 
of properties of these different matrices and not on the chain-
growth mechanisms.

Therefore, this study aims to determine how the initia-
tor system efficiency affects the relationship between the 
molecular weight of the chains and the water absorption 
capacity of these nanocomposites. As shown in Scheme 1, 
the breaking of the O–O chemical bonds in the NaPS, KPS, 
or APS radicals generates two  SO4−• free radicals per mol-
ecule. Therefore, the time and efficiency of the initiation step 
caused by the interaction between the  SO4−• radical and the 
vinyl monomers can affect both the polymeric chain size 
and the number of hydrophilic groups, as well as the water 
absorption properties of these nanocomposites.

Experimental

Materials

Acrylamide (AAm), N,N,N’,N’-tetramethylenediamine (TEMED), 
and KPS  (K2S2O8) and APS ((NH4)2S2O8) initiators were pur-
chased from Sigma-Aldrich. CMC (Mv = 114.000 g.mol^−1) and 
the NaPS  (Na2S2O8) initiator were obtained from Synth-Brazil. 
N,N’-methylenebisacrylamide (MBAAm) was acquired from 
Vetec-Brazil, and nanoclay Clt-Na+ was obtained from Southern 
Clay Products®. All reagents were used as received.

PAAm/CMC/Clt‑Na+ nanocomposite hydrogel 
synthesis

PAAm/CMC/Clt-Na+ nanocomposite hydrogels were syn-
thesized via free radical polymerization (Scheme 2), as 
recently described by our group [23, 24]. Initially, 0.3 g of 
CMC (or 1.0 mass/%) was solubilized into 27 mL of dis-
tilled water under magnetic stirring. Thereafter, Clt-Na+ (10 

Scheme 1  Decomposition of 
the  R2S2O8 initiators and the 
formation of a radical speci-
men to start the initiation step: 
R = Na, K, or  NH4
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mass/% in relation to AAm + CMC mass) was dispersed into 
the CMC solution with magnetic stirring for 60 min. Sequen-
tially, 1.8 g of AAm (or 6.0 mass/%), 0.078 g of MBAAm 
 (Cfinal = 16.9 mmol  L^−1), and 1.0 mL of the 0.2 mol  L−1 
TEMED solution  (Cfinal = 6.67 mmol  L^−1) were added to 
form a homogeneous solution. The system was then closed 
and maintained under a nitrogen atmosphere for 20 min to 
remove the oxygen dissolved in the solution. Finally, KPS, 
NaPS, or APS  (Cfinal = 3.5 mmol  L^−1) was added to start the 
polymerization reaction. The final solution was inserted into 
a mold (made up of two acrylic plaques separated by a 2 mm 
thick rubber spacer) and kept at room temperature for 24 h. 
Finally, the nanocomposites were removed and purified by 
dialysis for 7 days to remove all unreacted reagents.

Fourier transform infrared spectroscopy analysis

FTIR spectra were obtained on a Nicolet-NEXUS 670 
FTIR spectrophotometer, operating in the spectral range 
of 4000–400  cm^−1. The samples were dried, pulverized, 
and mixed with KBr to form pellets.

X‑ray diffraction analysis

XRD profiles of the powder samples were obtained using a 
diffractometer (Shimadzu-XRD-6000) equipped with  CuK∝ 

radiation (λ = 0.154 nm) in a scan range of 2θ = 5°–50° at 
1°/min, 40 kV, and 30 mA. The interlayer spacing values 
 (d001) were calculated using Bragg’s law n.λ = 2.d.sinθ [32].

Scanning electron microscopy

SEM micrographs of the samples were obtained using a 
ZEISS EVO LS15 electronic microscope operating at 20 kV. 
The hydrogels were frozen in liquid nitrogen and freeze-dried 
at − 55 °C until constant weight using a lyophilizer (model 
Enterprise II Terroni) after being allowed to swell in distilled 
water until the equilibrium stage. Finally, the samples were 
coated with a thin gold layer before observation by SEM.

Swelling degree

The SD values of the matrices were measured at room tem-
perature using gravimetric analysis. After dialysis, the samples 
were cut into 26 mm diameter circles and dried in an oven at 
40 ± 1 °C for 24 h. The samples were subsequently immersed 
into 20 mL of distilled water and weighed until constant mass. 
The SD values were calculated using Eq. 1 [33]:

where  Mt and  Md are the mass of the swollen and dried 
hydrogels, respectively.

(1)SD =

Mt

Md

Scheme 2  Schematic representation of the formation of the PAAm/CMC/Clt-Na+ nanocomposite hydrogels using different initiators
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The equilibrium stage of the samples was achieved when the 
SD values remained constant. All samples reached equilibrium 
after 48 h. The equilibrium point in the swelling phenomenon 
occurs due to the balance between the elastic force within the 
network structure of the hydrogel and the osmotic pressure out-
side [34].

Kinetic parameters

The kinetic parameters of the hydrogels and their nano-
composites were calculated from the slope and intercept of 
ln(Mt/Meq) versus ln(t) plots obtained based on the Ritger 
and Peppas [35] model using Eq. 2:

where  Meq is the mass of the hydrogel at equilibrium state, k is 
the swelling constant, and n is the swelling exponent.

When the n values are between 0.5 and 1, the water 
uptake mechanism is governed by anomalous transport (or 
non-Fickian diffusion); when the n values are close to 0.5 
and 1, the mechanisms are governed by Fickian diffusion 
and Case II transport, respectively [36].

Results and discussion

Fourier transform infrared spectroscopy

Table 1 shows the main spectroscopic assignments obtained 
for the AAm [24, 37–39], CMC [24, 37–40], and Clt-Na+ 

(2)
Mt

Meq

= ktn

specimens [24, 41–43]. Regardless of the initiator used, all 
the PAAm/CMC hydrogels (Fig. 1a, b) displayed a wide 
band between 3730 and 2880  cm−1 with peaks centered at 
3438 and 3169  cm−1, which correspond to the O–H and N–H 
stretching modes of CMC and AAm, respectively. Overlap-
ping of the asymmetric stretching of the COO,  CH2, and 
C–O–C groups belonging to the CMC, C = O, and C = C 
stretchings, respectively, and the N–H bending belonging to 
AAm is found in the 1675–1610  cm−1 region. Another sig-
nificant peak corresponding to the C = C bond of AAm was 
observed at 985  cm−1. All the hydrogel spectra displayed 
a CMC characteristic peak centered at 1417  cm−1 (–COO 
bending and C–O–O stretching). The absence of the C = C 
peaks in the PAAm/CMC hydrogel spectra confirmed its 
formation.

Figure 1 shows three characteristic Clt-Na+ peaks at 
1045, 917, and 465  cm−1, which correspond to the Si–O 
stretching and Al–OH–Al and Si–O–Si bending [24, 42, 
43], respectively, in all the PAAm/CMC/Clt-Na+ nano-
composites. In addition, in the nanocomposite spectra, 
the intensity of the peak at 1115  cm−1 corresponding to 
the–CH–O–CH2− group [24, 37–39] present in the PAAm/
CMC hydrogel decreases. The peak at 1640  cm−1 (attrib-
uted to the overlapping of the C = O stretching and N–H 
bending belonging to PAAm and the –COO− stretching 
and  CH2 bending belonging to CMC) [24, 37–40] found in 
the PAAm/CMC hydrogels was displaced to 1670  cm−1 in 
the PAAm/CMC/Clt-Na+ nanocomposites. Based on these 
observations, we hypothesized a scheme (Scheme 3) that 
depicts the possible interactions point between the nano-
clay and polymeric matrix.

Table 1  Main spectroscopic attributions of CMC, AAm, and raw Clt-Na+

Carboxymethylcellulose Acrylamide Cloisite-Na+

Peak (cm−1) Assignment Peak (cm−1) Assignment Peak (cm−1) Assignment

3438 O–H stretching 3380–3185 N–H stretching 3620 OH sctructural stretching
2917 C-H stretching 2812 C-H stretching 3456 OH interlayer stretching
1618 -COO asymmetric stretch-

ing,  CH2 bending,
C–O–C stretching

1675 C = O and C = C stretchings 1640 OH water bending

1417 -COO bending,
C-O–O stretching

1610 N–H bending 1045 Si–O stretching

1326 -CCH and -OCH coupled 
bend  CH2 rocking vibra-
tion

1431 CH2 bending 917 Al–OH–Al bending

1057 CH–O–CH2 stretching 1350 C-H bending 795 Si–O–Al vibration
1277 C-N stretching 524 Si–O–Al vibration
1139 C–C symmetric stretching 465 Si–O–Si bending
1050 C–C asymmetric stretching
992 Out of plan C = C–H bending
960 Out of plan C = C bending
700–619 N–H out-of-plane bending
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Fig. 1  FTIR spectra of a CMC, 
AAm, and PAAm/CMC, b Clt-
Na+ and the PAAm/CMC/Clt-
Na+ synthesized using different 
initiators
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X‑ray diffraction

Figure 2 shows an intense diffraction peak at 2θ = 7.40° in 
the XRD pattern of the raw Clt-Na+, which corresponds to a 
basal spacing  (d001) of 1.19 nm. This value is very similar to 
the value reported by Mirzataheri et al. [44] and Brantseva 
et al. [45].

The displacement of this diffraction peak from 2θ = 7.40° 
to 6.25° (or  d001 = 1.41 nm) in the XRD patterns of the 
hydrogel nanocomposites is caused by the opening of the 
nanoclay layers, suggesting its intercalation into hydrogel 
chains, as we hypothesized in Scheme 4. A minor shift 
in the same diffraction peak was previously oberved by 
our research group [43] for intercalated nanocomposites 
based on poly(methacrylic acid) hydrogel and nanoclay 
cloisite-Na+. The maximization in the intercalation process 
observed here is probably related to the presence of the 
CMC polysaccharide.

The amorphous characteristic of the PAAm/CMC hydro-
gel is preserved in all the nanocomposites even after nano-
clay addition. Due to the similarity in the XRD patterns, it 
was not possible to affirm that the type of initiator modifies 
their crystallinity. The amorphous regions inside hydrogel 
nanocomposites increased the sorption capacity of these 
matrices. Thus, preserving this property is vital, as these 
nanocomposites could be used as an adsorbent material to 
remove pesticides from contaminated water [46].

Scanning electron microscopy

Figure 3 shows the micrographs of the PAAm/CMC and 
PAAm/CMC/Clt-Na+ nanocomposites prepared using three 
different initiators. The presence of hydrophilic groups and 
the pore size are both known to influence the expansion of 
hydrogel chains [47]. All PAAm/CMC hydrogels initiated 
with NaPS (Fig. 3a), KPS (Fig. 3c), and APS (Fig. 3e) had 
highly interconnected porous surfaces. Similar morpholo-
gies were reported, for instance, by Meng et al. [48] for 
highly flexible interconnected  Li+ ion-sieve porous hydro-
gels and by Cao et al. [49] for eco-friendly porous double-
network hydrogel derived from keratin. Although the highest 
amount of pores had good interconnection, the presence of 
some closed pores is expected because of the lyophiliza-
tion process. In this process, when the molecules of water 
are sublimed, a force (thermodynamic process) presses the 
pore walls, thickening them. These morphological proper-
ties are extremely important because they help the matrix 
absorb water, which is facilitated by interactions with the 
hydrophilic groups of the hydrogel [50].

It was discovered that regardless of the initiator used, the 
pores retracted when nanoclay was added to the hydrogels 
(Fig. 3b, d and f), compared to the matrix without nano-
clay. This effect is due to the nanoclay acting as a physical 
crosslinker of the polymeric chains [24], which justifies the 
SD reduction, as will be further discussed.

Scheme 3  Possible interaction sites between the hydrogel chain and nanoclay
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Fig. 2  a XRD patterns of the 
nanoclay and nanocomposite 
hydrogels prepared using dif-
ferent initiators, b range of 2 
θ = 5-17º, indicating the interca-
lation region

(a)

(b)
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Swelling degree

The swelling degree was investigated to further understand 
the synthesis mechanism of these nanoclay-containing matri-
ces, which were synthesized with three different initiators.

Figures 4 and 5 shows that the hydrogels synthesized 
with the KPS initiator had the highest swelling capacity, 
followed by those synthesized with the NaPS and APS initia-
tors, indicating that the KPS initiator maximized the growth 
of the polymer chains and increasing the number of available 
hydrophilic groups that can interact with water molecules. 
This makes the formation of polymeric chains more ther-
modynamically favorable, allowing them to grow faster and 
absorb more water, resulting in chains with higher molecular 
weights (or with higher lengths) and more hydrophilicity. 
Based on these results, the nanocomposites synthesized by 
the KPS initiator probably had a slower velocity in the ini-
tiation step.

According to Umar et al. [51], the synergic effect of 
the rapid decomposition of the initiator and the high tem-
perature of the polymer solution may favor the termination 
step via chain transfer mechanism. In this case, the matrix 
will be made up of polymeric chains with low molecular 
weight and a small number of hydrophilic groups, which 
will decrease their expansion capacity [52], as confirmed 
by their decreased SD values (Fig. 5). A slower initiation 
stage can reduce the termination stage. In this condition, the 
termination mechanism is most likely to occur through chain 

combination [53]. We hypothesized that the synthesis with 
the KPS initiator had the slowest termination stage, indicat-
ing that this synthesis requires more time to lose heat than 
the syntheses with the other initiators.

The decrease in swelling degree observed for all nano-
composites is probably associated with the obstruction 
caused by the presence of nanoclay among the initiator 
and monomer in the nanocomposite-forming polymeric 
solution, which causes a possible decrease in the chain 
molecular weight of the nanocomposite. These factors, 
which are associated with the physical crosslinking caused 
by nanoclay, are responsible for decreasing the chain elas-
ticity and density of the hydrophilic groups, consequently 
decreasing the capacity of these nanocomposites to absorb 
and retain water molecules in their three-dimensional 
structure.

It is well-know in the literature that cross-linking den-
sity is one of the most important parameters affecting the 
mechanical properties of the hydrogels. For instance, Xiang 
et al. [54] observed that presence of inorganic clay (Laponite 
XLS) increased the tensile strength, elongation at break, and 
compressive strength of biocompatible clay/P(MEO2MA-co-
OEGMA) nanocomposite hydrogels. The amount of water 
absorption also has an important effect on the mechanical 
properties of the hydrogels. Aouada et al. [55] confirmed 
that modulus of elasticity and swelling degree properties 
of the poly(acrylamide) and methylcellulose hydrogels are 
inversely proportional.

Scheme 4  A hypothetic model of hydrogel conformation into a nanoclay structure
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(a) (b)

(c) (d)

(e) (f)
Fig. 3  SEM micrographs of a  PAAm/CMC-NaPS, b PAAm/
CMC/10%-Clt-Na+-NaPS, c PAAm/CMC-KPS, d PAAm/CMC/10%-
Clt-Na+-KPS, e PAAm/CMC-APS, and f PAAm/CMC/10%-Clt-Na+-

APS. Hydrogel micrographs were obtained at 1.000 × magnification. 
The bar size is 10  µm, and an accelerating voltage of 7.0  kV was 
applied
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Kinetic parameters

An example of swelling kinetic plot ln  (Mt/Meq) vs ln t, 
used to determine the diffusional exponent n and constant 
k, is shown in Fig. 4, and their values are shown in Table 2. 

Equations 3 [56] and 4 [35] represent the Fick´s first and 
second laws. Fick´s first law indicates that the mass flux (J) 
of the solute depends to their rate of change concentration in 
relation to position, ∂C/∂x [56]. Already, the Fick´s second 
law is found from Fick´s first law and mass conservation.

where D is the diffusion coefficient.

where t is the time.
The water molecules were transported anomalously through 

the three compositions without nanoclay. However, when nano-
clay was introduced into the polymeric matrix, the n values 
decreased, indicating Fickian diffusion. The same behavior was 
observed for hydrogels synthesized from APS initiator. This 
trend is related to the reduction in the elasticity of the polymeric 
chains [57]. The SD measurements indicated that the introduc-
tion of nanoclay increased the rigidity of the polymeric matrix. 
Indeed, all the nanoclay-containing nanocomposites presented 
a 45% reduction in water absorption.

Additionally, the incorporation of nanoclay galleries into 
the nanocomposites improved the velocity of water uptake 
by about 50%, as quantified by constant k. This improvement 
is crucial for applications that require rapid water uptake, 
such as the remediation of water contaminated by pollutants. 
Finally, from Table 2, it was possible to observe an inverse 
correlation between  SDeq and k parameter. For instance, 
polymeric matrices synthesized from the APS initiator had 
the highest k (highest water uptake velocity) parameter and 
the lowest  SDeq values (lowest water absorption).

Conclusions

In this study, PAAm/CMC/Clt-Na+ nanocomposites were suc-
cessfully synthesized, and the chain-growth mechanisms for 
different systems started by three initiators were investigated. 
The most probable interaction points between the polymeric 
matrix and nanoclay were identified using spectroscopic tech-
niques. Scanning electron micrographs confirmed that all the 

(3)J = −D
�C

�x

(4)�C

�t
= D

�
2C

�x2

Fig. 4  Example of a swelling kinetic plots ln  (Mt/Meq) vs ln t of 
PAAm-CMC-NaPs hydrogel used to determine the n e k parameters
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Table 2  Obtained  SDeq, k and n values of the hydrogel and nanocomposite hydrogels synthesized using different initiators

* Standard deviation < 0.01

[%Clt-Na +] KPS NaPS APS
SDeq (g/g) n k (h−1) R2 SDeq (g/g) n k (h−1) R2 SDeq (g/g) n k (h−1) R2

0 40.8 ± 0.8 0.68 ± 0.01 0.14* 0.99 38.1 ± 1.0 0.64 ± 0.01 0.15* 0.99 34.8 ± 0.7 0.66 ± 0.01 0.18 ± 0.01 0.99
10 27.2 ± 0.6 0.61 ± 0.01 0.21 ± 0.01 0.99 24.1 ± 0.2 0.57 ± 0.01 0.22* 0.99 19.3 ± 0.1 0.54 ± 0.01 0.28 ± 0.01 0.98
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nanocomposites had highly interconnected porous surfaces 
regardless of the presence of nanoclay or the initiator type and 
that the pores suffered retraction because of the presence of 
nanoclay. Both the retraction and physical crosslinking effects 
of the nanoclay were confirmed by SD measurements. The 
XRD analysis revealed that the nanoclay was intercalated into 
the polymeric matrix and that the amorphous characteristics of 
the matrix were preserved even after nanoclay addition. Free 
radical polymerization reactions initiated by NaPS, KPS, or 
APS modified the molecular weight and hydrophilicity of the 
nanoclay–hydrogel nanocomposite chains. It was possible to 
understand how the chain-growth mechanism influenced the 
physicochemical properties of these matrices.

This study is very promising because controlling the chain-
growth mechanisms may optimize the hydrophilic properties of 
these nanocomposites, increasing their applicability.
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