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Abstract
Additive manufacturing (AM) offers several advantages for transforming productive chains, such as generation of complex 
geometries on demand. However, challenges must be overcome toward increasing manufacturing precision and quality of the 
parts produced, reducing production time, and standardizing the processing parameters. One example of common failure is 
the incorrect processing parameter selection for the filament-based AM, which can damage 3D printing machines, such as 
hotend clogging. In that way, this paper introduces a method that identifies AM’s polymeric materials through in situ near-
infrared (NIR) spectroscopy and classifies them into poly(lactic acid), acrylonitrile butadiene styrene, and poly(ethylene 
glycol terephthalate), also enabling a manual parameter input. A low-cost NIR spectrophotometer was used to analyze 16 
filaments with color and manufacturer variability. Each filament was probed 3 times in 3 distinct places, raising 144 spectra. 
Chemometrics were applied to identify relevant peaks for functional groups, and a linear regression was used to filter out 
data that showed no such peaks. In a second stage, a second-derivative Savitzky–Golay was used to aid in class separation, 
and a principal component analysis was performed to reduce data dimensionality. The resulting projections were classi-
fied by an LDA algorithm, and 3 study cases conducted with data augmentation tested the classifier. The results show the 
proposed method is robust to bias variation and can handle blends of up to 70%–30% mix and correctly separate signals 
with and without peaks. Such responses have proved the feasibility of the classification system, especially when fed with a 
highly varied data set.

Keywords Additive manufacturing · Machine learning · NIR spectroscopy · Chemometrics · FDM · Automation

1 Introduction

The development of recent digital and electronic technolo-
gies has led to a series of production strategies in global 
industries that have adopted advanced manufacturing tech-
niques based on work automation, robotics, Internet of 
Things (IoT), and data intelligence. Industries that apply 
such technologies, coordinated to confer competitiveness 
and optimization of the productive chain, are inserted in the 
era of industries 4.0 [7, 13, 21]. Among the modernities 
provided by this new industrial phase, additive manufactur-
ing (AM), also called 3D printing, is defined as a group of 
processes that produces objects in three dimensions from a 
digital model [11, 16, 28]. In the scope of Industry 4.0, the 
need for customization of manufactured goods has made AM 
essential, given its great ease of adaptation and customiza-
tion. Also, as the disadvantages of the process are overcome, 
AM is transformed, especially by the inclusion of electronic 
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components, such as electrical circuit boards and sensors 
[9, 10, 27].

Fused Deposition Modeling (FDM) is an AM technique 
widely used in the market and recognized for its manufacture 
of high-quality products in shorter processing time [9, 27]. 
In this process, the polymeric filament is introduced in a 
heated nozzle through the liquefier until the corresponding 
melting temperature. The molten material is deposited by the 
print head on the manufacturing platform according to the 
guidelines in the XY plane of the digital model. The move-
ment in the Z plane is controlled by either the platform, or 
the print head itself. Despite this simple functionality, FDM 
generates complex geometries precisely and safely and has 
been widely used not only in production, but also in offices 
and educational centers [9, 32, 35].

The increased popularity of the low-cost FDM equip-
ment, called desktops, has led to the emergence of differ-
ent polymeric filaments, among which compounds made of 
acrylonitrile–butadiene–styrene (ABS), poly(lactic acid) 
(PLA), and poly(ethylene glycol terephthalate) (PETG) are 
the most widespread on the market [31], [35]. However, the 
use of FDM equipment in production environments is still 
limited, mainly by the difficult standardization of best pro-
cessing configurations that are dependent on those materials 
[17, 20, 24]. Therefore, several studies have explored the 
relationship between the rheological properties of materials 
and the optimization of processing parameters [8, 9, 25], 
exposing the lack of norms and standards for the reproduc-
ibility of the process and consequent difficulty in adapting 
the system to mass production. The literature also reports 
the importance of a proper adjustment of processing param-
eters toward a better quality of the objects produced [20, 24]. 
In contrast, according to a review conducted by Vyavahare 
et al. [35], only 12% of specific literature has dealt with 
recent advances in the FDM technique, such as monitoring, 
control, and automation of the process.

Automation corresponds to the computerized use of 
machines and devices in the manufacturing process for 
the development of different tasks with minimum human 
effort [8, 19], therefore, robotics, hardware, and assistive 
devices, as well as the fundamentals of artificial intelligence 
and machine learning (ML), have been widely used and 
applied [14, 33]. Haverkort and Zimmermann [15] claimed 
that when learning from production data, machine learning 
algorithms are able to improve both efficiency and safety of 
a process, making it more dynamic and intelligent. Regard-
ing AM processes, according to a review conducted by Goh 
et al. [14], ML concepts have been applied as object design, 
material adjustment, process optimization, cloud services, 
and cybersecurity.

In the context of this work, ML enables the creation of 
a classifier that previously identifies the classes of materi-
als and automatically configures the processing conditions 

and automates the AM process. The system must collect the 
feature data of each material, differentiate their peculiari-
ties, and adjust the respective best processing parameters, 
whereas the sensing device must necessarily be able to read 
such peculiarities and communicate directly with the clas-
sifier. As a sensing device, the alternative is the use of near-
infrared (NIR) spectroscopy (NIRS), a type of spectroscopy 
capable of identifying compounds by employing vibrational 
frequencies in the wavelength range from 780 to 2500 nm 
[29]. When aligned with analytical chemistry procedures 
(specifically Chemometrics), NIR provides a particular fin-
gerprint of the materials [23, 30]. In addition to this advan-
tage, in the last decade, its technology has experienced an 
extensive transformation with the emergence of extremely 
portable, miniaturized, accessible, and connected devices. 
Some near-infrared spectrometers are already considered 
smart objects, since they can interconnect the physical world 
with online systems using cloud computing resources [2, 3, 
23]. The next step in the evolution of the idealized system is 
its integration with other emerging technologies associated 
with AM through, for example, its adaptation to monitoring 
and control systems, such as those proposed by Goh et al. 
[14] and [22].

This manuscript presents a classifier based on NIR spec-
troscopy and chemometrics that automatically identifies the 
material used in AM and guides the settings of its process-
ing parameters. The objective of the system is to reduce 
manufacturing failures resulting from an improper selection 
of processing parameters for each material, as well as to 
increase the accessibility of the technology to the public by 
decreasing the dependence of the process on the user.

2  System design

The conceptual project proposes the association of sensing 
devices and 3D printers toward a system that automatically 
identifies the raw material and, subsequently, adjusts the pro-
cessing parameters. The selection of the sensing method is 
directly dependent on the way the materials are introduced 
in the process. Regarding FDM equipment, in which the 
material is introduced tractioning the polymeric filament in 
the extruder, the use of portable near-infrared spectropho-
tometers for capturing material information is an excellent 
alternative, due to their technological evolution and minia-
turization of spectroscopic devices [23].

Figure 1 illustrates the system design, which is the poly-
meric filament (1) organized by a spool (2) and inserted 
into an extrusion head (3) that manufactures the part (4). 
Attached to the manufacturing environment is a portable 
near-infrared spectrophotometer (5) that, aided by a refer-
ence bulkhead (6), receives and sends spectral information 
to an acquisition board (7). An effective functioning of the 
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system requires the filament to have direct contact with the 
capture windows while a spectrum is obtained. Information 
of the raw material is sent to the acquisition board, which 
operates in conjunction with the classifier developed in this 
study. The system checks the identity of the material accord-
ing to the spectral characteristics specific to each class. In 
the case of identification of a material, the inputs of the 
processing parameters specific to the material are given. 
The configuration information can be stored in a cloud-con-
nected database. In this way, the user can enter and share the 
unknown settings of the equipment. The manufacturing pro-
cess is then started, and an informative report of the process 
is sent to the cloud to be available to the user. On the other 
hand, if the material is not identified, the system guides the 
operator to manually configuring the processing parameters. 
The entered settings, as well as an informative report of the 
selected process conditions, are uploaded and stored in the 
cloud database, and then, manufacturing begins.

At this point, it is important to note that the methodol-
ogy and the results presented in this manuscript describe the 
development of the first version of the classifier, which was 
able to identify the materials studied by aligning machine 
learning and chemometrics techniques.

3  Development of the algorithm

The research roadmap is described below and illustrated 
in Fig. 2.

This study examines in  situ polymeric filaments 
intended for the FDM technique and the hypothesis that 
portable NIR spectroscopy sensors can provide informa-
tion for the discrimination of material features, enabling 
the machine learning classification process. Following 
the guidelines of [26], the supervised machine learning 
employed in this study is divided into four stages, namely 
(1) data collection; (2) data preparation (exploratory data 
analysis and feature engineering); (3) training of the clas-
sification model; and (4) testing. In the first, spectral data 
of PLA, ABS, and PETG polymer filaments are collected 
and analyzed. Next, the exploratory analysis procedures 
start with the pre-treatment of data by second-derivative 
Savitzky–Golay (SG) algorithm and end with Principal 
Component Analysis (PCA), reaching a decision to use 
the first 3 components as features to a linear classifier. The 
third step was separated as just LDA classifier, to serve as 
baseline for the classification, then enhancing it by per-
forming a pre-classification step to remove the confusing 

Fig. 1  Material identification 
system applied to the FDM 
process. (1) Polymeric filament; 
(2) Spool; (3) Extrusion head; 
(4) Part; (5) Near-infrared spec-
trophotometer; (6) Reference 
bulkhead; and (7) Acquisition 
board. Adapted from [1]

Fig. 2  Methodology roadmap
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group in an earlier stage. Finally, the last stage was done 
by performing 3 study cases with data augmentation.

3.1  Data collection

Initially, 19 commercial polymeric filaments of PLA, ABS, 
and PETG of 1.75 ± 0.05 mm diameter and different col-
orations were selected from four different manufacturers. 
More information about these filament samples is viewed 
in Table 1 of the supplementary material. A model DPL 
NIRscan Nano Texas Instrument portable spectrophotometer 
acquired the spectral data; it performs absorbance measure-
ments in at most seven seconds and operates in the 900 to 
1700 nm range. Measurements are taken in triplicate for 
three different positions of each polymeric filament, totaling 
3 × 3 x 19 = 171 sample spectra with 228 absorbance values. 
Polytetrafluoroethylene (PTFE) was used as a support and 
calibration material for the measurement spectroscopy data 
of the raw materials, since it does not interact significantly 
with NIR radiation, reflecting most of the radiation back to 
the detection system; therefore, it is ideal for such an appli-
cation as a reference material. Figure 3 illustrates the col-
lection spectral data from polymeric filaments by a portable 
spectrophotometer.

Figure 4 shows two examples of PLA spectra obtained 
from the second reading of the blue and black colored fila-
ments from Manufacturer 4, using the DPL NIRscan Nano 
Texas spectrophotometer.

The first analysis evaluated the appearance of the spec-
tral data by promoting a band assignment study toward 
understanding of the main particularities of the samples. 
Band assignment allows not only understanding relevant 

information about the identity of the analyzed material but 
also evaluating the bond behavior of the chemical groups 
belonging to it. Note that not all spectral data generated 
provide band information relevant to classification, such 
as the spectrum of the black PLA filament shown in Fig. 4. 
According to Becker, Sachsenheimer and Klemenz [4], 
the lack of band information in spectra of darkly colored 
polymers is explained by the fact that these materials are 
composed of pigments/colorants (e.g., soot and carbon 

Fig. 3  Data Collection: a refer-
ence measurement; b polymer 
filament measurement

Fig. 4  Spectra of samples that show (blue-colored PLA filament) and 
do not show (black colored PLA filament) absorption of near-infrared 
radiation
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black), which absorb all light in the NIR spectral region. 
Therefore, spectral data without relevant band information, 
such as gray and black filaments, were removed from the 
dataset in the first step.

Figure 5 shows the main absorption bands in the 1000 
to 1700 nm infrared region of NIR spectra of PLA, ABS, 
and PETG filament samples, respectively. According to 
Burns and Ciurczak [6], the absorption bands located in 
the NIR region for polymers (800 to 2500 nm) contain 
overtones and combinations related to stretches of C–H, 
N–H, and O–H bonds. For PLA (Fig. 5a), bands asso-
ciated with vibrations are observed in the region of the 
second C–H stretching overtone (1100 nm to 1200 nm), 
specifically at wavelengths between 1132 and 1166 nm. 
In the sequence, there are bands assigned to asymmetric 
and symmetric stretching vibrations, especially of methyl 
groups  (CH3) present in the first overtone of the C–H com-
bination (1300 to 1500 nm and 1600 to 1700 nm). The 
ABS spectra (Fig. 5b) contain two representative bands in 
the 1139 to 1196 nm range, inserted in the second stretch-
ing overtone of the aromatic and methyl C–H group, 
respectively. A prominent absorption peak is observed in 
the 1406 nm wavelength region and related to the first 
overtone of the  CH2 and C–H combination band, and two 
peaks are in the range of the first C–H stretching overtone 
(1600 to 1700 nm). Burns and Ciurczak (2008) claimed 
this sequence of absorption bands is typical of styrene-
derived polymers. Similarly, the vibrational spectra of 
PETG (Fig. 5c) show two absorption bands in the region of 
the second C–H stretching overtone (1100 and 1200 nm), 
with peaks mainly at wavelengths near 1121 and 1189 nm 
and related to the aromatic C–H group. PETG is a modi-
fied version of PET, which has a high hydroxyl content in 
the near-infrared region [5]. The results show the distin-
guishing factor between the data to be classified is based 
on the difference in the functional groups present in the 
chemical structure of the polymeric filaments. The peaks 
identified by assigning absorption bands are analogous and 

stable for most of the samples, except for the data from the 
black-colored PLA filaments and the gray-colored PLA 
and ABS.

Another peculiarity observed in the spectral data shown 
in Fig. 5 is the clear variation in the baselines of samples of 
the same material, but different colorations/manufacturers. 
The literature reports that these variations are caused by the 
equipment itself, for example, due to temperature variations 
in the radiation source, and non-uniformity of the samples, 
differences in granulometry and changes of pigments and 
dyes in the material identified this specificity by performing 
a study related to NIR spectroscopy applied to samples with 
PLA and PET aggregation [5, 12, 18]. They have shown 
that as PLA concentrations increase, there is a change in the 
absorption of infrared radiation causing the change in the 
baseline. The variation in the baseline is a determining factor 
for the predictive ability of the classifier. Thus, it is implicit 
the importance of applying derivative methods in the spec-
tral data treatment stage to correct both baseline shift and 
slope. Also, such methods can increase peak detection sensi-
bility, which, as described, are relevant to band assignment.

3.2  Data preparation

Data preparation comprises two correlated processes, 
namely exploratory analysis and feature engineering. The 
former applies statistics and visualization methods to better 
understand the data identifying features, trends, qualities, 
and possible classifications factors. After the best features 
are identified and selected, the classification model can be 
created by feature engineering. In this study, the exploratory 
analysis performed used Unscrambler X version 10.4.

Initially, the spectral data are imported into the software 
in a matrix format with 171 objects (samples) and 228 vari-
ables (wavelength), and the treatment begins with a second 
derivative by Savitzky–Golay (SG) algorithm. Figure 6 
shows the result of SG application to the spectral data, cal-
culating the second derivative in a second-order polynomial 

Fig. 5  Example of identifiable near-infrared (NIR) absorption spectra of polymeric filaments for FDM processes: a PLA; b ABS; and c; PETG
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with a seven-point window. The criterion for the choice of 
parameters was based on the need for corrections in the base-
line of the spectra, reduction in the light scattering effects, 
and amplification of the characteristic peaks of each material 
(Fig. 5) toward increasing the classification capability of the 
algorithm. According to Fig. 6, the application of the second 
derivative maximized the information on the curve's concav-
ity, facilitating the location of the data absorbance peaks. 
Therefore, the treatment identified the wavelength regions 
of location of each material's absorbance bands, reducing 
the number of overlapping peaks and increasing the ability 
to distinguish between classes.

The importance of SG application for spectral data clas-
sification performance is proved by the PCA projection of 
the untreated data (Fig. 7). In this project, PCA was designed 
by the Singular Value Decomposition (SVD) method, which 

is an algorithm that distinguishes dimensions with highest 
variance data [34]. PCA's objective is to reduce the dimen-
sionality of the original dataset space without affecting the 
properties of the samples. Therefore, correlated samples are 
grouped in a specific region of the score plot to be more evi-
dent for analyses by a classification model. Figure 7 shows 
the projection of the raw data generated a nonlinear distribu-
tion of the sample with no homogeneous clustering of the 
spectra of the same material.

The effect of SG application to the spectral data is best 
seen in Fig. 8, which illustrates the dispersions of pretreated 
PLA, ABS, and PETG spectra on the PCA projection score 
plot.

Along PC-1, a distributed group of PLA samples is 
formed in the positive quadrants of the axis (I and IV), and 
ABS and PETG groups are formed in the region of nega-
tive values (II and III). The distinction between the scatters 
of the latter samples is clear along PC-2, where groups of 
PETG and ABS are located in the positive (II) and negative 
(III) quadrants of the axis, respectively. The results show 
the parameters selected for the SG treatment as well as the 
projection of the data by PCA were sufficient for grouping 
similar samples and distancing dissimilar ones, in such a 
way they are linearly separable via PC1 and PC2 features.

Nevertheless, a group of samples from different classes 
(PLA and ABS) is observed in quadrant II—they are spectra 
with no visible absorption bands in the 1000 to 1700 nm 
range. As will be seen below, this result will be critical for 
the predictive ability of the classification model, since the 
selection of the correct frontier would be a difficult task for 
a linear decision algorithm.

For sake of completeness, Fig. 9 shows a normalized 
comparison between the curves of the inverse PC-2 loading 
plot and the characteristic spectra of the samples that varied 
the most along this axis, i.e., those related to ABS.

Fig. 6  Savitzky-Golay digital filtering treatment of NIR spectra of 
PLA, ABS, and PETG applying the second derivative in a 2nd order 
polynomial and seven-point window

Fig. 7  PCA score plot projected 
to the data set with no pretreat-
ment. The projection shows an 
inhomogeneous scatter (PC-1 
explains 88% of total variance 
while PC-2 explains 9%)
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The wavelength where the loading peak occurs indi-
cates the most relevant regions for the formation of the 
rescaled axis of the PCA. As can be seen, the characteris-
tic wavelength intervals of PC-2 formation are analogous 
to the absorbance bands of ABS throughout the analysis 
range. This corroborates the fact that the SG has enhanced 
the curvatures of the peaks to facilitate the projection of 
the PCA according to the distribution trend of the absorb-
ance bands relative to each material, hence acting as a 
peak template, without the need to artificially create such 
structure.

3.3  Classification step

The whole dataset was used in an LDA classifier for the 
creation of a baseline and assessment of the extension to 
which the group in Fig. 8 might cause a misclassification. 
Initially, the spectral data set of 171 samples was divided 
into two subsets, namely calibration (70%) and test (30%). 
The randomness of the data set partition was guaranteed 
by Kennard–Stone algorithm, which selects samples that 
accurately represent the variability in the evaluated spec-
tra. The calibration subset was separated for training the 
LDA classification model, while the test one validated the 
classifier. As a result, the created model performed the 
training with 95% accuracy, verified by only four inac-
curate specifications. In the validation process, the clas-
sifier prediction accuracy was 79.63%, verified by eight 
incorrect classifications. All incorrect classifications refer 
to ABS samples with reduced absorbance signals being 
categorized as PLA, exactly the ones identified in Fig. 8. 
The precision, recall, and macro-f1 metrics of the clas-
sifier validation resulted in 59.62%, 76.73%, and 0.67, 
respectively.

Despite LDA's high classification performance for spec-
tral data, the model was unable to classify PLA and ABS 
samples grouped in the same region of the PCA score plot 
(Fig. 8, quadrant II). Specifically, these are samples where 
the levels of pigmentation, dye, or other additives directly 
influenced the absorption in the near-infrared. Figure 10 
depicts the spectral signal difference between samples that 
show (orange-colored ABS filament) and do not show (gray-
colored ABS filament) absorption of near-infrared radiation. 
An in-depth analysis of the interaction of the additive mask 
with the intrinsic spectral analysis of the polymer should be 
further investigated.

Fig. 8  PCA score plot projected 
for the data set with pretreat-
ment. The data treatment 
defined the clustering of the 
samples. As indicated, distinct 
class groupings will be adjusted 
in the algorithm steps

Fig. 9  Comparison between the loading plot that contributed to PC-2 
formation and the typical spectrum of the ABS sample. The loading 
identified characteristic ABS curvatures over the entire wavelength 
range, facilitating the well-defined dispersions of the samples in PCA



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2022) 44:338

1 3

338 Page 8 of 13

3.4  Enhanced classification algorithm

The formulation of the enhanced classification algorithm was 
based on chemometric activities applied to spectral data and 
previous exploratory analysis results. The exploratory anal-
ysis procedures were replicated in  MATLAB® version 8.5, 
developed by MathWorks Inc. Initially, the spectral data were 
imported into the software in a 171-sample matrix format for 
228 wavelengths (nm) values. Numerical response vectors cre-
ated identified the classes (− 1, 0, and 1 were the indicators for 
PLA, ABS, and PETG, respectively). The possible outputs of 
the program were classification of the PLA, ABS, and PETG 
polymer filament spectra or guidance for a manual operation 
of the system.

The first decision node inserted at the beginning of the 
proposed classification algorithm aims to solve the problem 
of data with no near-infrared absorbance, discriminating the 
input spectra with no absorbance information. This decision 
node consists of calculating the angular coefficient of spectra 
in the 901.32 to 1701.23 nm range for discriminating spectral 
data with low absorbance information. According to Eq. 1, 
function b returns the slope line of the linear regression of 
the spectra formed by x wavelength values and y absorbance 
measurements. Here, the possible outputs are the continuation 
of the screening process or a manual selection of the process-
ing parameters of the 3D printing equipment, depending on 
threshold value b.

(1)b =

∑
�

x − x
�

�

y − y
�

∑
�

x − x
�2

The function in charge of the decision node defines the 
following two outputs: (1) if the angular coefficient times 
one thousand is higher than − 0.092, the spectrum will 
undergo classification, and (2) if the angular coefficient is 
lower than − 0.092, the system directs the user to manual 
operation. Value − 0.092 was acquired by an outlier detec-
tion algorithm, called Median Absolute Deviation. A 0.5% 
cutoff was chosen for each side, resulting in a value of 4.6, 
and the average between the smallest and the largest value of 
the distribution was calculated, generating a − 0.092 thresh-
old value.

After the first decision node, only 3 × 3x16 = 144 samples 
were selected; the spectra selected for classification were 
subjected to the pre-treatment discussed in the Data Prepara-
tion section. Figure 11 shows the score plot of the PCA pro-
jection that illustrates the ability of the enhanced algorithm 
to treat and separate the spectral data toward facilitating the 
construction of the decision planes of the LDA model.

3.5  Model training

In the training stage, the treated spectra are resized by the 
projection of the PCA, specifically by three principal com-
ponents. The result of the PCA projection aided the train-
ing performed by the Classification Learner application of 
 MATLAB®, in which the LDA method was selected as the 
classification model. For training, the generalization ability 
of the classification model was evaluated by a 10-segment 
cross-validation.

The classification performance of the model can be better 
understood by analyzing the LDA mechanism when aided 
by the PCA projection. Figure 12 shows the decision planes 
(PLA-ABS, PLA-PETG, and ABS-PETG) created by LDA, 
which are responsible for the separations between the sample 
scatters in the score plot. PLA, ABS, and PETG samples 
are clustered in limited and distinct regions in the three-
dimensional space of the principal components (PC-1, PC-2, 
and PC-3), which explains the maximum percentage of the 
training accuracy.

4  Algorithm tests

Test cycles check the classification accuracy of the samples 
and generate a final evaluation of the algorithm. In this step, 
the model is subjected to new spectral data examples for the 
quantification of the input data, as well as the understanding 
and generalization of the classifier prediction. In this con-
text, the data augmentation technique has proved extremely 
useful in providing modified copies of the spectra and meet-
ing the shortage of new data with specific traits. The data 
augmentation applied in this study generated three distinct 
subsets of data namely, A, B, and C. Subset A is formed by 

Fig. 10  Spectra of samples that show (orange-colored ABS filament) 
and do not show (grey colored ABS filament) absorption of near-
infrared radiation
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samples created from the averaging of the absorbance of 
spectra of a same material, but different colors. Subset B 
was generated by the percentage addition of the absorbance 
of spectra from different materials, but of the same colora-
tion. Finally, subset C was obtained by percent addition of 
the absorbance of spectra of the same material (ABS), but 
of distinct signal strengths. Case studies developed from 
such subsets can evaluate the classification capability of the 
algorithm.

Figure 13 shows the spectral data resulting from the data 
augmentation procedure—the spectra in Fig. 13a, b, and c 
refer to subsets A, B, and C, respectively—note the evident 

similarity in the configurations of the spectra in Fig. 13a 
and the original PLA, ABS, and PETG spectra (Fig. 5). In 
contrast, Fig. 13b shows the increase in the absorption signal 
percentage from one material to the other led to a loss of pat-
tern information in the original spectral data, as indicated by 
the arrows. Thus, the ability of the classifier was measured 
using similar (subset A) and distinct (subset B) spectra to 
those already observed during training. Figure 13c, on the 
other hand, shows the mixing of absorbance signals from 
the spectra of yellow ABS (good signal) and gray ABS (bad 
signal) filaments reduced absorbance amplitude, as seen in 
the samples with a 10%/90% ratio.

Fig. 11  PCA resulting from the 
processes defined for the algo-
rithm. PLA, ABS, and PETG 
samples are grouped in limited 
and distinct regions in the score 
plot, justifying the high accu-
racy of the classifier

Fig. 12  Distribution of NIR 
spectra samples in three-
dimensional space (PC-1, PC-2, 
and PC-3) and separated by the 
PLA-ABS, PLA-PETG, and 
ABS-PETG decision planes of 
the Linear Discriminant Analy-
sis (LDA)
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The case study that used spectral data from subset A con-
firmed the stability of the classifier, showing a maximum 
result of the evaluation metrics, as expected, since the char-
acteristic absorbance bands are maintained after the data 
production. Another important finding is that the entire data 
processing applied to the test subsets ensured the baseline 
variation in the spectra would not impair the classification 
accuracy, thus showing the effectiveness of the algorithm in 
classifying spectra typical of the analyzed materials, regard-
less of the baseline variation.

The case study that used spectral data of the subset B 
consisted of a stress test of the classifier, since the algorithm 
was subjected to spectra with mixtures of absorbance signals 
from two different materials, obtaining spectra previously 
unseen in training. The goal was an analysis of the system´s 
behavior and obtaining its classification limit. Considering 
the correct classifications given to the material with the 
highest percentage of absorbance signal, the results of the 
evaluation metrics showed maximum classification accuracy 
up to the mixing ratio of 70%/30%. In case, 12 incorrect 
identifications out of the 54 samples tested were detected 
and referred to the 55%/45% ratio (77.78% of accuracy). 
In conclusion, it is observed that the algorithm performs 
the classification according to the comparison of similari-
ties between the spectra learned in training and approxima-
tion of the scatter groupings delimited by the decision plans 
described in Fig. 11.

The last case study evaluated the effectiveness of the first 
decision node in discriminating spectra with low absorb-
ance signals. The data augmentation procedure mixed the 
information from low and high absorbance spectra, thus 
generating subset C, and a linear regression calculated for 
the spectral data in this subset obtained slope values (b), 
which were compared with the -0.092 threshold value. As 
addressed elsewhere, b must be greater than − 0.092 in the 
first decision node for the algorithm to guide the collected 
spectrum to the data treatment procedures and subsequent 

classification. The results showed the only samples in subset 
C that completely met this condition were composed of 45% 
information from spectra with good absorbance signal and 
55% from spectra with low absorbance signal (dark gray 
curve in Fig. 13c). The other samples, i.e., those composed 
of 30%/70% and 10%/90% (red and blue curves in Fig. 13c, 
respectively), were discriminated by the algorithm, proving 
the first decision node corresponds to an excellent filter of 
spectra with a low absorbance signal.

In addition to contributing to the understanding of the 
prediction limit of the classifier, the testing step guided the 
development of the roadmap for the best prediction condi-
tion of the algorithm. Figure 14 shows a flowchart of the 
classification algorithm developed in this study.

5  Conclusions

This manuscript introduced a novel classifier that identifies 
the raw polymeric material used in AM (or in other applica-
tions), enabling the construction of a system that automati-
cally adjusts the equipment's processing parameters (mainly 
plate temperature, hotend temperature, and extrusion speed). 
The design of the roadmap of the classification algorithm 
was based on the alignment of Chemometrics procedures 
and machine learning fundamentals. The implementation 
steps were essential for obtaining training with maximum 
classification metrics when applying a 10-segment cross-
validation, and tests with new data accurately recognized 
spectra similar to those presented in training and classified 
spectral data of varying aspects. For these latter, the clas-
sifier's limit of correct predictions was reached for samples 
with percent absorbance signal mixtures of 70%/30%.

The exploratory data analysis proved the potential of NIR 
spectroscopy as a sensing method that accurately identified 
the characteristics of each class of material studied. The fea-
tures of the samples were more prominent when maximized 

Fig. 13  Data augmentation results. a Subset A: average absorbance of 
spectra of same material and different colorations. b Subset B: per-
centage difference of the absorbance of spectra of different materi-

als and same coloration. c Subset C: percentage difference of spectra 
with high and low sign of absorbance
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by digital filtering and noise smoothing processes, such as 
the Savitzky–Golay method. The exploratory analysis also 
showed the relevance of data dimensionality reduction per-
formed by PCA concerning the classification performance 
of linear models such as LDA which created decision 
hyperplanes that discriminated scatters from samples in the 
PCA score plot. Therefore, the capability of the classifier 
depends directly on feature engineering, as well as on the 
quality of the pre-treatment of the spectral data, effective 

PCA projection, and choice of the best classification model. 
Furthermore, the algorithm proved its high capacity for dis-
criminating the input of spectra with little spectral informa-
tion from the analyzed material.

According to the results, the proposed classifier amounts 
to a promising resource for optimizing a program that auto-
mates the usual MA processes. The field of application of 
3D printing has been significantly expanded, and less costly 
modern miniaturized sensing devices have emerged. Studies 

Fig. 14  Flowchart of the devel-
opment of the material identi-
fication algorithm divided into 
data input, feature engineering, 
training, testing, and evaluation
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of additive processes have currently focused on optimizing 
the relationship between processing parameters and produc-
tion quality. Therefore, our classification algorithm grants the 
initial procedures of a system that, aligned with the aforemen-
tioned studies, increase both the accessibility and productivity 
of AM in several manufacturing domains.

Finally, the integration of the method with the open-source 
work of Parsekian et al. [22] would enable online and real-time 
automatic parameters adjustments on low-cost 3D printing 
machines using G-CODEs based on the RepRap project. Even 
a less experienced user would be able to load a 3D printer with 
PLA, ABS or PETG filament, and the printer automatically 
configures the printing parameters during the process, even if 
the filament is changed during the 3D printing process.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40430- 022- 03645-1.
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