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Abstract: In this work, room-temperature UV-assisted ozone detection was investigated
using ZnO nanoplates synthesized via precipitation, ultrasound-, ultrasonic tip-, and
microwave-assisted hydrothermal (MAH) methods. X-ray diffraction confirmed the for-
mation of crystalline phases with an ~3.3 eV band gap, independent of the synthesis used.
Raman spectroscopy revealed oxygen-related defects. Plate-like morphologies were ob-
served, with the ultrasonic tip-assisted synthesis yielding ~17 nm-thick plates. Electrical
measurements showed 10–170 ppb ozone sensitivity under UV. The sample synthesized
via the MAH method (ZM) demonstrated superior conductance, with a baseline resistance
of ~1.2% for the ultrasound (ZU) sample and less than 50% for the precipitation (ZA) and
ultrasonic tip (ZP) samples. Despite the appreciable response in dark mode, the recovery
was slow (>>30 min), except for the UV illumination condition, which reduced the recovery
response to ~2 min. With top areas of ~0.0122 µm2, ZP and ZU showed high specific surface
areas (24.75 and 19.37 m2/g, respectively), in contrast to ZM, which exhibited the lowest
value (15.32 m2/g) with a top area of ~0.0332 µm2 and a thickness of 26.0 nm. The superior
performance of ZM was attributed to the larger nanoplate sizes and the lower baseline re-
sistance. The ultrasound method showed the lowest sensitivity due to the higher resistance
and the depletion layer effect. The results indicate that the synthesis methods presented
herein for the production of reactive ZnO nanoplates using NaOH as a growth-directing
agent are reliable, simple, and cost-effective, in addition to being capable of detecting ozone
with high sensitivity and reproducibility at concentrations as low as 10 ppb.

Keywords: zinc oxide; nanostructures; morphology; gas sensors; photostimulation

1. Introduction
Ozone (O3) is an atmospheric gas essential for sustaining life due to its ability to

filter harmful UV radiation from the sun. Its strong oxidizing properties make it of sig-
nificant technological interest, being broadly applied in wastewater treatment [1], food
sanitation [2], textile industries [3], and medical therapies [4]. However, exposure to high
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ozone concentrations poses significant risks to human health. Even at low concentrations,
prolonged exposure can irritate the eyes, impair respiratory function, damage the nervous
system, and aggravate lung diseases [5,6]. In the atmosphere, ozone is produced by a
photochemical transformation of nitrogen oxides (NOx) and volatile organic compounds
(VOC) on hot days, representing the second major air pollutant [7]. The World Health
Organization (WHO) establishes an average 8 h exposure limit of 50 ppb, while Euro-
pean guidelines classify concentrations above 120 ppb as hazardous. To address these
concerns, air quality gas sensors are valuable tools for monitoring ozone and ensuring that
its concentration remains within safe levels.

Chemoresistive gas sensors are known for their relatively simple fabrication and high
sensitivity, being widely studied for the detection of a myriad of target gases [8–12]. In
particular, chemoresistive sensors based on metal oxide semiconductors (MOSs) stand out
for their thermal stability and large specific surface areas, offering numerous active sites
that enhance the adsorption–desorption mechanism of different gases [13,14]. Neverthe-
less, achieving considerable sensitivity with MOSs often requires relatively high working
temperatures (200 to 500 ◦C) [15], which ends up increasing energy consumption and
the final cost. Therefore, it is highly desirable to develop a low-cost sensing material
with scalable synthesis methods capable of efficient gas detection at lower energy require-
ments. In this context, the replacement of thermal activation with photostimulation has
provided an efficient means for the sensing device to operate at reduced temperatures [16].
Within the diverse array of MOS sensing materials [17–20], zinc oxide (ZnO) exhibits excep-
tional characteristics. Its wide band gap (3.37 eV), high electron mobility (approximately
400 cm2V−1s−1), and inherent chemical stability contribute to its superior performance for
gas-sensing applications, particularly those requiring stable and sensitive detection [21–24].
For instance, Fioravanti et al. [25] synthesized seven different morphologies of ZnO to
evaluate the shape dependence and sensing properties of a gas sensor device. Accord-
ing to their study, aggregated leaf- and bisphenoid-shaped nanoparticles exhibited better
performance than monocrystals.

Regarding the synthesis process, it plays a key role in determining the material prop-
erties, as it can influence defect density and promote anisotropic growth in preferential
directions [26,27]. Such control over the growth mechanisms and morphology increases
the surface area and exposes more reactive surfaces, thereby enhancing the adsorption and
desorption of analyte gas molecules [28]. Moreover, the pursuit of synthesis methods that
are simple, cost-effective, environmentally friendly, and capable of providing precise con-
trol over synthesis parameters in order to tailor the final characteristics of nanostructured
materials has become a major focus in the field of materials science. For ZnO, several syn-
thesis techniques have been reported in the literature [29], including co-precipitation [30],
sol-gel processing [31], and hydrothermal [32] methods. Each synthesis method presents
a unique set of advantages and limitations. The precipitation technique, for example, is
simple and cost-effective due to its operation at ambient temperatures [33]. However, the
limited control over the synthesis parameters as a result of few adjustable parameters
hinders the ability to fine-tune the material properties to desired specifications. As for
the ultrasound- and ultrasonic tip-assisted methods, despite introducing greater flexibil-
ity through adjustable parameters such as ultrasonic frequency, amplitude, temperature,
and processing time [34,35], they are susceptible to autogenous temperature, which in-
creases within the solution and can be difficult to scale because of the localized nature
of cavitation and the challenges in ensuring uniform energy distribution within larger
reaction vessels. Conversely, while requiring a slightly more complex experimental setup
the microwave-assisted synthesis provides the most comprehensive control over numerous
synthesis parameters. This method allows the precise adjustment of temperature, reaction
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time, solvent selection, and microwave power, facilitating the fine-tuning of the synthesis
process [28]. Furthermore, the microwave-assisted approach leads to rapid synthesis and is
applicable to a wider range of materials that may be challenging or impossible to synthesize
using other methods, such as conventional precipitation techniques. Indeed, microwave-
assisted hydrothermal (MAH) synthesis has gained considerable attention as a promising
approach for producing nanostructured MOSs since it offers high-quality nanostructures
with precise control over phase formation, chemical composition, particle size distribution,
and morphology. Notably, precipitation and ultrasound-assisted methods are also valuable
due to their ease of implementation, low cost, and potential for large-scale production.

Therefore, to elucidate the impact of the synthesis method on the ozone sensing per-
formance of nanoparticles, this work systematically compares zinc oxide nanostructures
synthesized via four scalable, energy-efficient, and environmentally friendly methods:
precipitation, ultrasound-assisted, ultrasonic tip-assisted, and microwave-assisted hy-
drothermal techniques. By evaluating the UV light-assisted ozone sensing abilities of these
nanostructures across a range of concentrations (10–170 ppb), we demonstrate the critical
role of synthesis method in tailoring material properties for optimized room-temperature
ozone detection. Herein, UV photoactivation was employed instead of thermo-activation
because it is a promising, cost-effective alternative that also preserves the structural integrity
of the sensing material by preventing severe degradation resulting from high temperatures.

2. Materials and Methods
2.1. Synthesis of the ZnO Nanostructures

The ZnO nanostructures were synthesized using zinc acetate dihydrate
(Zn(CH3COO)2·2H2O, Sigma-Aldrich, St. Louis, MA, USA, 99%) and sodium hydrox-
ide (NaOH, Neon, 97%) as chemical reagents. Separate solutions of each precursor were
prepared by dissolving them in 40 mL of deionized water under constant stirring at room
temperature for 10 min using 0.1 and 0.5 M of zinc acetate dihydrate and sodium hydroxide,
respectively (1:5 molar ratio). Then, the hydroxide precursor solution was slowly added to
the zinc one, resulting in a white slurry mixture. This mixture was homogenized for 10 min
and subsequently used to obtain the ZnO nanostructures through four distinct techniques.
The samples were named ZA, ZU, ZP, and ZM, as indicated below:

• Precipitation (ZA): The mixture was stirred continuously using a magnetic stirrer for
30 min at room temperature.

• Ultrasonic bath (ZU): The beaker containing the solution was submitted to an ultra-
sonic bath at 50 mA for 30 min at room temperature.

• Ultrasonic tip (ZP): To perform this synthesis, a protected metallic ultrasonic tip was
inserted into the beaker containing the solution, which was then subjected to ultrasonic
agitation at 40 mA and 40% amplitude for two sets of 15 min.

• Microwave-assisted hydrothermal (MAH) method (ZM): The mixture was transferred
to a Teflon autoclave and placed inside an adapted microwave oven (this setup was
described in a previous work [21]). The synthesis was conducted at 130 ◦C and
a heating rate of 10 ◦C/min for 8 min. The system autogenous pressure reached
approximately 300 kPa (~3 atm).

After each synthesis process, the as-obtained precipitates were washed several times
using deionized water until pH 7 and a centrifuge to separate the precipitate from the
liquid phase (8000 rpm for 5 min). Afterward, the samples were dried at 90 ◦C for 12 h,
resulting in a fine white powder.
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2.2. Characterization of the ZnO Nanostructures

X-ray diffractometry was carried out on a Rigaku ULTIMA IV diffractometer with
CuKα monochromatic radiation (λ = 1.5405 Å) in the 2θ range from 20 to 80◦. Micro-Raman
spectroscopy was performed on a WITec Alpha300 R microscope operating at 10 mW in
the 50 to 800 cm−1 range using an excitation wavelength of 488 nm. Infrared spectroscopy
(FTIR) analyses were performed using a Shimadzu IR-Prestige 21 spectrometer equipped
with an attenuated total reflectance (ATR) accessory. The spectra were acquired in the
range of 400 to 4000 cm−1. Field-emission scanning electron microscopy (FE-SEM, Zeiss
Supra 35) images of the nanostructures were collected using a 5 kV acceleration voltage. To
characterize the morphology and identify exposed crystallographic planes of the synthe-
sized nanostructures, high-resolution transmission electron microscopy (HRTEM) was also
employed. Imaging was performed with the aid of a Phillips TEM-FEI CM 120 microscope.
The UV-Vis data were collected in diffuse reflectance spectroscopy (DRS) mode using a
Shimadzu UV-2600i spectrophotometer in the range of 1000 to 200 nm. The DRS data
were converted into Tauc plots via the Kubelka–Munk function. The 5-point Brunauer–
Emmett–Teller (BET) method was employed to determine the specific surface area of the
ZnO nanoplates using Micromeritics ASAP2010 equipment. The photoluminescence (PL)
spectra at room temperature were measured using Horiba Fluorolog 3 equipment equipped
with a 450 W short-arc xenon lamp and a PPD-850 detector. The measurements were carried
out in triplicate and the average spectra were normalized with the maximum intensity
between the samples.

2.3. Preparation of the Sensing Platforms

To perform the ozone gas-sensing measurements, the sensors were prepared using
the drop-casting method. First, 9 mg of the sample was dispersed in 50 µL of propanediol
(Sigma-Aldrich, St. Louis, MA, USA, 98%) using an ultrasonic bath. The obtained suspen-
sion was dropped three times onto a SiO2/Si substrate with 120 nm-thick Pt electrodes
separated by 50 µm. Then, to remove the solvents used in the film preparation, the substrate
with the deposited suspension was annealed at 300 ◦C in an electric oven at a heating rate
of 10 ◦C/min under an air atmosphere for 1 h.

2.4. Characterization of the Sensing Films

For the electrical measurements, the sensors were inserted into a specific chamber that
allows dynamic gas-sensing measurements through the control of the substrate temperature,
gas flow, and gas concentration (the gas-sensing workbench is shown in Figure S1). Ozone
concentrations between 10 and 300 ppb were generated with a calibrated pen-ray UV
lamp. During the measurements, O3-containing dry air (carrier gas) was delivered to the
sample at a constant flow rate of 250 sccm. Additional details on the gas-sensing setup are
available in a previous study [36]. The sample electrical resistance was recorded using an
electrometer (Keithley 6514) under a 1 V DC bias. Experiments were conducted at room
temperature (30 ± 1 ◦C) under continuous ultraviolet illumination (Thorlabs, 375 nm, 6.8
mW), with the light source positioned 10 mm from the sample and the exposure lasting 1
min. The sensor response (S) was defined as follows:

S =

(
Rgas − Rair

)
Rair

, (1)

where Rgas represents the maximum value of the sensor electrical resistance when exposed
to O3 gas, and Rair is the sensor electrical resistance in dry air.
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3. Results
3.1. Characterization of the ZnO Nanostructures

Figure 1 shows the X-ray diffraction (XRD) patterns of the four ZnO samples. All
observed reflections correspond to the wurtzite ZnO phase (ICSD #65120 [37]), with no
detectable secondary phases or impurity-related peaks. Different XRD patterns can be
found in the literature depending on the morphology of ZnO nanostructures. For instance,
for ZnO nanorods vertically aligned directly onto SiO2/Si substrates, as synthesized by
Catto et al. [38], virtually only the (002) plane was detected, as it dominated the plane
formed by the tip of the rods. In the case of rods not aligned to a preferred orientation, the
intensity of (100) tends to be higher than that of (002) [21]. Noticeably, the (100) and (002)
planes correspond to the {1010} and {0001} plane families in hexagonal coordination, respec-
tively. Thus, the patterns in Figure 1 suggest a preferred crystallization along the <1010>
direction. This direction comprises six symmetrically equivalent growth orientations, all
perpendicular to the [0001] axis, and can be confirmed by observing the intensity ratio of
the (100) and (002) reflections.
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Figure 1. X-ray diffraction (XRD) patterns of the synthesized zinc oxide (ZnO) nanoplates.

Figure 2 illustrates the Raman spectra of the samples collected at room tempera-
ture. All Raman modes were assigned to the wurtzite structure of ZnO, in agreement
with the literature and previous XRD data [39–41]. In addition, no modes associated
with secondary phases were observed, confirming the phase formation and sample pu-
rity. The Raman spectrum of wurtzite ZnO (space group P63mc) is represented by
Γopt = A1 + E1 + 2E2 + 2B1 [42], where A1 and E1 are both Raman and infrared active modes
(split into longitudinal optical (LO) and transverse optical (TO) modes), E2 modes are only
Raman active (separated into low (E2L) and high (E2H) frequency modes), and B1 modes
are silent [43]. The A1 and E1 modes represent vibrations of the Zn and O atoms parallel
and perpendicular to the c-axis, respectively, and were found at ~384 cm−1 (A1 (TO))
and ~582 cm−1 (E1 (LO)). Although A1 (LO) and E1 (TO) are commonly found at about
560–575 cm−1 and 410–430 cm−1, respectively, they are not distinguishable in the spec-
tra of Figure 2, probably due to an overlapping with the neighboring modes [40]. The
E1 (LO) mode corresponds to the existence of structural defects, such as oxygen vacan-
cies [41]. Lastly, the E2L mode at ~102 cm−1 refers to the vibration of Zn atoms, while
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E2H at ~439 cm−1 corresponds to the vibration of O atoms and is the fundamental mode
characteristic of ZnO [44].
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Figure 2. Raman spectra of the zinc oxide (ZnO) nanoplates synthesized via different chemical routes,
illustrating their vibrational modes.

Figure S2 displays the FTIR spectra of the as-synthesized ZnO nanoplates. The spectra
exhibit no distinguishable variations among the samples. The prominent absorption band
below 500 cm−1 corresponds to the Zn-O stretching vibration of the ZnO phase [45,46]. The
uniformity of this band across all samples suggests that the different synthesis methods
did not significantly alter the fundamental Zn-O bonding within the ZnO lattice. Other
minor absorption bands were detected at approximately 2990, 2350, and 1050 cm−1. The
peak at 2990 cm−1 is attributed to C-H stretching vibrations [45,46], while that at 1050 cm−1

corresponds to C-O stretching vibrations [45], which are likely due to sample handling or
adsorbed atmospheric organic species. The peak at 2350 cm−1 is assigned to atmospheric
carbon dioxide (CO2) [47], a common observation in FTIR spectra. Given their minimal
intensity, these peaks do not indicate organic presence within the ZnO nanoplates and can
be regarded as background contributions routinely observed across diverse samples in
FTIR analysis.

Figure 3 shows the SEM images of the ZnO nanostructures for each of the investigated
synthesis routes. According to the literature, although the most common morphologies for
wurtzite ZnO are plates and rods, derived morphologies lead to other structures, such as
lettuce-, dumbbell-, flower-, and needle-like nanostructures [48–51]. As depicted in Figure 3,
in this work, all samples displayed 2D structures with plate-like morphologies regardless
of the synthesis method used, but with noticeable differences in the shape of their edges,
especially for the sample synthesized using the MAH method (ZM). Compared to the other
samples, ZM presented nanoplates with larger lateral sizes and greater thickness as well
as well-defined edges. On the other hand, ZP nanoplates were thinner and with irregular
edges, displaying smaller plate sizes. ZA and ZU exhibited characteristics close to those
of the ZP. Table 1 summarizes the average size distribution for each sample, while Figure
S3 shows the size distribution plots. The observed differences can be attributed to the
extreme conditions associated with the MAH synthesis, under which higher temperatures
and pressures induce rapid crystallization, leading to differences in both size and shape
observed in the ZM nanoplates. The BET method was used to determine the specific
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surface area of the samples (Table 1). The data confirmed a correlation between particle size
and specific surface area, with smaller nanoplates exhibiting higher values. For instance,
ZP and ZU, which had the smallest top areas (~0.0122 µm2), showed the highest specific
surface areas (24.75 m2/g and 19.37 m2/g, respectively), whereas ZM, which had the
largest top area (0.0332 µm2) and the greatest thickness (26.0 nm), exhibited the lowest
specific surface area (15.32 m2/g). This trend is consistent with the expectation that smaller
nanostructures provide a greater surface area. Figure S4 shows the Tauc plots and estimated
band gap energies of the ZnO nanoplates, with values of approximately 3.3 eV, which are
in accordance with the literature for pure ZnO and indicate that variations in structural
defects and morphology did not significantly alter the overall band gap.
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Figure 3. Scanning electron microscopy (SEM) images of zinc oxide (ZnO) nanostructures synthesized
by (A) precipitation, (B) ultrasound, (C) ultrasonic tip, and (D) microwaves, showing the resulting
morphologies.

Table 1. Size distribution of the nanoplates considering their top area and thickness obtained from
the FE-SEM images as well as specific surface area obtained from BET measurements.

Sample Top Area
(µm2)

Thickness
(nm)

Specific Surface
Area (m2/g)

ZA 0.0142 ± 0.0017 17.1 ± 0.4 15.86 ± 0.05
ZU 0.0122 ± 0.0013 22.8 ± 0.6 19.37 ± 0.08
ZP 0.0122 ± 0.0014 17.7 ± 0.6 24.75 ± 0.03
ZM 0.0332 ± 0.0033 26.0 ± 0.6 15.32 ± 0.03

High-resolution transmission electron microscopy (HRTEM) was performed in a rep-
resentative sample (ZM) to investigate the crystal growth of the ZnO nanoplates (Figure 4).
As indicated in the figure, a plate-border region was selected for the analysis. The calcu-
lated d-spacings of the fringes shown in the inset correspond to the (1010) plane of ZnO
(d = 0.280 nm) [52], confirming crystal growth in the <1010> direction (indicated by a blue
arrow). In addition, the exposed facet of the nanoplates consists of (0001) planes (c-axis),
which is the plane perpendicular to the growth direction of the crystals.



Chemosensors 2025, 13, 152 8 of 20Chemosensors 2025, 13, x FOR PEER REVIEW 8 of 22 
 

 

 

Figure 4. High-resolution transmission electron microscopy (HRTEM) image of zinc oxide (ZnO) 
sample synthesized by the microwave-assisted hydrothermal (ZM) method. The inset displays the 
calculated d-spacing and crystal growth direction (blue arrow). 

It is well reported in the literature that each MOS morphology displays shape-de-
pendent surfaces with specific surface plane termination, energy, polarity, and defect dis-
tribution [27,53,54]. For ZnO, plate-like morphologies consist of Zn-terminated (0001) po-
lar surfaces on one side and O-terminated (0001ത) polar surfaces on the other side, with 
(101ത0) nonpolar surfaces on the lateral sides parallel to the [0001] direction [55] (Figure 
5A). The (101ത0) planes have lower surface energy and are more stable than (0001) ones 
[56], which usually result in the formation of rod-like structures due to the preferential 
growth in the [0001] direction, as seen in Figure 5A. However, by controlling the synthesis 
procedures, it is possible to manipulate the growth kinetics so as to obtain different mor-
phologies [48,57]. For instance, Xu et al. [58] used PEG200 to obtain dumbbell- and cauli-
flower-like nanostructures as well as microrods while varying the H2O fraction in a sol-
vothermal synthesis, which was used for the detection of n-butanol gas. Ma et al. [59] 
adjusted the water-to-glycol ratio to control solvent polarity, directing ZnO crystal growth 
into various morphologies, which were then decorated with Au nanoparticles to detect 
triethylamine. Lastly, Ferreira et al. [60] obtained porous 3D flower-like ZnO nanostruc-
tures using the MAH method followed by calcination at temperatures ranging from 300 
to 700 °C. Conventional methods for achieving similar results often require harsh condi-
tions, such as high temperatures, environmentally harmful solvents, or the addition of 
surfactants [61–64]. Thus, in this work, we used NaOH as both a precipitating and a 
growth-directing agent, as it can be considered a simple and less impactful way to induce 
the growth of ZnO nanoplates. We employed a 1:5 molar ratio of Zn to OH precursors for 
all syntheses to create an environment with excess OH- in order to induce crystallographic 
growth in the <101ത0> direction (which consists of six symmetric growth directions per-
pendicular to [0001]), resulting in the formation of nanoplates, as illustrated in Figure 5B. 
These mechanisms can be explained by the preferential adsorption of OH− molecules on 
(0001) planes [55], inhibiting the growth in such direction and consequently leading to 

Figure 4. High-resolution transmission electron microscopy (HRTEM) image of zinc oxide (ZnO)
sample synthesized by the microwave-assisted hydrothermal (ZM) method. The inset displays the
calculated d-spacing and crystal growth direction (blue arrow).

It is well reported in the literature that each MOS morphology displays shape-
dependent surfaces with specific surface plane termination, energy, polarity, and defect
distribution [27,53,54]. For ZnO, plate-like morphologies consist of Zn-terminated (0001)
polar surfaces on one side and O-terminated (0001) polar surfaces on the other side, with
(1010) nonpolar surfaces on the lateral sides parallel to the [0001] direction [55] (Figure 5A).
The (1010) planes have lower surface energy and are more stable than (0001) ones [56],
which usually result in the formation of rod-like structures due to the preferential growth in
the [0001] direction, as seen in Figure 5A. However, by controlling the synthesis procedures,
it is possible to manipulate the growth kinetics so as to obtain different morphologies [48,57].
For instance, Xu et al. [58] used PEG200 to obtain dumbbell- and cauliflower-like nanos-
tructures as well as microrods while varying the H2O fraction in a solvothermal synthesis,
which was used for the detection of n-butanol gas. Ma et al. [59] adjusted the water-to-glycol
ratio to control solvent polarity, directing ZnO crystal growth into various morphologies,
which were then decorated with Au nanoparticles to detect triethylamine. Lastly, Ferreira
et al. [60] obtained porous 3D flower-like ZnO nanostructures using the MAH method
followed by calcination at temperatures ranging from 300 to 700 ◦C. Conventional methods
for achieving similar results often require harsh conditions, such as high temperatures,
environmentally harmful solvents, or the addition of surfactants [61–64]. Thus, in this
work, we used NaOH as both a precipitating and a growth-directing agent, as it can be
considered a simple and less impactful way to induce the growth of ZnO nanoplates. We
employed a 1:5 molar ratio of Zn to OH precursors for all syntheses to create an environ-
ment with excess OH− in order to induce crystallographic growth in the <1010> direction
(which consists of six symmetric growth directions perpendicular to [0001]), resulting in the
formation of nanoplates, as illustrated in Figure 5B. These mechanisms can be explained by
the preferential adsorption of OH− molecules on (0001) planes [55], inhibiting the growth
in such direction and consequently leading to lateral growth and plate formation. Such
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mechanism is of great interest since it allows the formation of morphologies with exposed
(0001) and (0001) planes, which have higher surface energy and can improve the nanostruc-
ture reactivity compared to morphologies such as rods (which have a higher proportion of
less-reactive (1010) planes) [56].
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Figure 5. (A) Illustration of the exposed facets and crystal orientation for rod- and plate-like mor-
phologies of zinc oxide (ZnO). (B) Schematic diagram of the proposed crystal growth mechanism for
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Photoluminescence (PL) spectroscopy was conducted to examine the optical properties
of ZnO nanoplates (Figure 6). The PL spectra are nearly identical across the different
synthesis methods employed and consist of four emission bands in the green (540–580 nm),
yellow-orange (580–640 nm), and red (640–740 nm) regions. These emissions are attributed
to specific defect states: (i) green emissions arise from singly ionized oxygen vacancies
and are linked to transitions from zinc interstitials to oxygen vacancies and interstitials;
(ii) yellow-orange emissions are associated with oxygen interstitial defects; and (iii) red
emissions correspond to doubly ionized oxygen vacancies [65]. It is possible to compare
the concentration of such defects in the samples by calculating the area under the curve
for each emission. As shown in Figure 6E, transitions related to oxygen vacancies are
more significative than those associated with oxygen and zinc interstitials. However, no
significant differences were observed in the proportion of these emissions for each sample.

3.2. Characterization of the Sensing Films and Gas-Sensing Measurements

The surface of the sensing films after the deposition and sensing measurements can
be found in the SEM images (Figure 7). As observed, the nanoplates randomly settled on
the surface of the substrates, either vertically or horizontally. The nanoplates exhibited
excellent thermal stability, maintaining their tightly packed arrangement even after heat
treatment, as the morphological characteristics of the ZnO nanoplates remained unaltered
and identical to those observed in Figure 3 for all samples. This indicates that neither the
deposition procedure nor the sensing measurements caused any significant changes to
their shape. Nonetheless, a closer look at the surface of the nanoplates (insets of Figure 7)
revealed the appearance of small circular depressions, which are probably indicative of
surface reactivity due to O3 sensing mechanisms via the adsorption/desorption of oxygen
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species. Furthermore, the nanoplate arrangement allowed the formation of pores among
the particles. Such characteristics are essential for gas-sensing devices since they increase
the specific surface area of the films, enhancing the availability of adsorption sites and
consequently their reactivity toward the target gas.
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UV light-assisted ozone-sensing measurements were performed to investigate the
gas-sensing performance of the ZnO samples. Figure 8 shows the sensing response of a
representative sample (ZA) exposed to 10 ppb of ozone in dark mode and under continuous
UV light irradiation, both at room temperature. Notably, the ZA nanoplates exhibited
sub-ppm ozone sensitivity at room temperature even in the absence of UV light, despite
showing a slightly low response compared to the measurement under UV irradiation.
Similar results were found for the other ZnO samples. This result suggests that the samples
were sensitive to ozone at room temperature even without photostimulation. However,
a significant difference was observed in the recovery time after O3 exposure. In dark
mode, the sample electrical resistance did not return to its initial value even after 30 min,
indicating that the molecular desorption rate from the surface was slow. Under continuous
UV photostimulation, although the sample exhibited a slightly higher response to O3, the
recovery time was drastically reduced to approximately 2 min. These findings confirm
that UV irradiation can enhance desorption, preventing surface poisoning and improving
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sensor performance. The enhanced sensor response and faster recovery time observed
herein are consistent with the findings reported in the literature for ZnO [38]. Nevertheless,
our results contrast with those found by Catto et al. [38], who reported that ZnO nanorods
require UV activation to detect O3, showing no response in dark conditions. This evidences
the superior sensing ability of ZnO nanoplates toward ozone gas at room temperature,
indicating that the sensing mechanism does not rely exclusively on photoactivation but can
be further enhanced by light-assisted gas detection.
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Figure 8. Room temperature gas-sensing performance of the zinc oxide (ZnO) sample synthesized
by precipitation (ZA) when exposed to 10 parts per billion (ppb) of ozone (O3) under ultraviolet
light-emitting diode (UV LED) excitation and in dark mode (no light).
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The difference in recovery time between dark mode and UV irradiation can be at-
tributed to the ozone-sensing mechanism, which involves both the adsorption–desorption
of oxygen species and the reaction with ozone molecules. Exposure to oxygen leads to
the formation of O2

− superoxide species, which are dominant at room temperature [21].
This process reduces the electron density in the conduction band (CB) of ZnO, creat-
ing an electron-depleted layer on the surface, thereby increasing the sensor resistance
(Equation (2), Figure 9A). When exposed to ozone, the O3 molecules dissociate on the
surface, forming O2 and O−, which ends up decreasing the density of electrons in the CB
and further increasing the sensor resistance by thickening the depletion layer (Equation
(3)) [66] in both dark and UV-light stimulation conditions (Figure 9B and Figure 9E, respec-
tively). This enhanced resistance causes the detected electrical signal to monitor the sensing
response. Under UV illumination, electron-hole pairs are photogenerated, increasing the
electron density in the CB and, in turn, decreasing the sensor resistance (Equation (4)) [67].
Additionally, photogenerated holes react with adsorbed oxygen species, promoting their
desorption and reducing their resistance by increasing the density of CB electrons and
decreasing the depletion layer thickness (Equation (5), Figure 9D and Equation (6), Fig-
ure 9F) [68]. Such a process is absent in the dark, which hinders the desorption of oxygen
species and prevents the immediate recovery of resistance after O3 exposure (Figure 9C).
These results evidence that UV irradiation not only activates ZnO nanoplates but also
enhances their sensing performance.

O2 (g) + e−
(CB) → O−

2(ads) (2)

O3 (g) + e−
(CB) → O2 (g) + O−
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Figure 9. Schematic illustration of the proposed mechanism for ultraviolet (UV) light-assisted ozone
(O3) gas detection. Variations in the depletion layer thickness (grey area) of zinc oxide (ZnO) under
(A) synthetic dry air, (B) ozone, and (C) after ozone exposure in dark mode; (D) synthetic dry air,
(E) ozone, and (F) after ozone exposure under UV light. Red and blue arrows indicate increases and
decreases in the depletion layer thickness, respectively.

To evaluate the O3 gas-sensing performance of the ZnO nanoplates under continuous
UV light stimulation, the ZnO samples were exposed to distinct O3 concentrations, with



Chemosensors 2025, 13, 152 13 of 20

three exposure cycles collected for each concentration, as displayed in Figure 10A–D.
The experiments were conducted at room temperature. The ZnO films exhibited sensing
activity at all tested O3 concentrations, from 10 to 170 ppb, achieving full recovery after
each exposure cycle. The results also demonstrated good repeatability, as the samples
consistently showed stable responses across all three cycles at the same O3 concentration.
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Figure 10. Room temperature gas-sensing performance of zinc oxide (ZnO) samples synthesized by
(A) ultrasound (ZA), (B) ultrasonic tip (ZU), (C) precipitation (ZP), and (D) microwaves (ZM), when
exposed to various ozone (O3) concentrations (10, 30, 100, and 170 parts per billion (ppb)) under
continuous ultraviolet (UV) illumination.

The sensing response was determined based on the resistance variation shown in
Figure 10 and using Equation 1 (see Figure 11). As can be observed, all samples exhibited an
enhanced response to ozone gas as its concentration rose from 10 to 170 ppb. Notably, at the
lowest concentration (10 ppb), the synthesis method revealed little influence on the sensing
response. On the other hand, at higher concentrations (up to 170 ppb), the ZM sensor
outperformed the others, while the ZU sample demonstrated the lowest sensitivity. The
observed variations in the gas-sensing performance can be attributed to a complex interplay
of factors, including specific surface area, surface reactivity, morphology, nanocrystalline
size, and structural defects, all of which are established determinants of sensor behav-
ior [67,69,70]. In this study, while structural and optical properties remained relatively
consistent among all samples according to previous analyses, remarkable differences in
morphology and baseline resistance emerged, which may directly impact the sensing re-
sponse. SEM analysis revealed distinct morphological variations, with the ZM sample
exhibiting the largest and most regular nanoplates. This morphology likely contributed to
the significantly lower baseline resistance of the films, which was found to be ~1.2% for the
ZU sample and less than 50% for the ZA and ZP samples. This observation is consistent
with the findings reported by Baxter et al. [67], who demonstrated that larger particles
tend to exhibit enhanced conductivity and that morphology significantly influences pho-
toconductivity. Thus, baseline resistance can be a critical factor for the determination of
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ozone sensitivity. Given that ozone is an oxidizing gas, it is possible to correlate a lower
baseline resistance with improved sensitivity since the combined effect of a smaller size
and a more extensive depletion layer may have impaired sensitivity by amplifying the
depletion effect. Furthermore, while the differences in the sensing response of all samples
were not dramatic, the variations in specific surface area, particularly between the ZM
sample and the ZU/ZP samples likely played a key role. With smaller size distribution,
the ZP and ZU samples exhibited higher specific surface areas, which could potentially
enhance gas adsorption. However, the higher baseline resistance of these samples may
offset this advantage. The observed variations in gas-sensing performance can be therefore
primarily explained by the differences in morphology and baseline resistance, both directly
influenced by the synthesis method. Our findings establish a clear correlation between the
chosen synthesis route and the resulting sensing ability of the ZnO nanoplates. Despite the
differences, it is crucial to emphasize that all samples demonstrated sensitivity to ozone at
room temperature under UV light stimulation. This confirms the viability of all synthesis
methods for the production of functional ZnO nanoplates for ozone-sensing applications.
The best-performing sensor also displayed repeatability and surface chemical stability since
no significant resistance deviations under ozone and baseline resistance were observed after
six exposure cycles (Figure S5). Figure 12 shows the response (Figure 12A) and recovery
times (Figure 12B) of the ZnO nanoplates at different ozone concentrations. The response
time averaged approximately 40 s, with minimal variation among ozone concentrations.
Recovery times, on the other hand, showed ozone concentration dependence, varying from
100 s (lowest concentration) to 200 s (highest concentration).
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as a function of ozone concentration, illustrating the sensor sensitivity.

Table 2 summarizes the performance of various MOSs applied as ozone gas-sensing
materials and compares them to the ZnO nanoplates obtained in this study. The data
reveal that the minimum ozone detection level achieved by the ZnO samples is com-
parable to or better than those reported for other MOSs. This highlights that although
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the ZnO nanoplates synthesized via the MAH method exhibited superior response at
the tested ozone concentrations, all synthesis methods used were effective in producing
high-performance ozone gas sensors.
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Table 2. Summary of sensor performance for ozone gas detection using various MOS-based sensors,
detailing synthesis methods, operating temperatures, excitation wavelengths, and minimum ppb
levels considered in each study.

Sensing
Material Synthesis Method Operating

Temperature

Minimum
O3 Level

(ppb)

Excitation
Wavelengths Ref.

ZnO nanorods Hydrothermal
Room

temperature
(26 ◦C)

100 UV (351 nm) [38]

Au-modified
ZnO nanorods Hydrothermal

Room
temperature

(26 ◦C)
30 UV (370 nm) [71]

ZnO thin film Sputtering 250 ◦C 90 --------- [72]

SnO2
nanoparticles Hydrolysis

Room
temperature

(25 ◦C)
12

UV (315 nm), violet
(405 nm) and blue

(465 nm)
[73]

In2O3
nanostructures Co-precipitation 70 ◦C 30 --------- [74]

ZnO nanoplates

Precipitation,
ultrasonic bath,

ultrasonic tip, and
MAH

Room
temperature

(30 ◦C)
10 UV (375 nm) This Work

4. Conclusions
In this work, ZnO nanoplates were synthesized using precipitation, ultrasound-

assisted, ultrasound tip-assisted, and microwave-assisted hydrothermal methods. All
samples were crystalline and free of secondary phases. The Raman spectroscopy analysis
indicated that oxygen-associated defects were dominant, which was further corroborated
by photoluminescence spectroscopy. A band gap energy of ~3.3 eV was estimated for the
samples, which was found to be independent of the synthesis method. Scanning electron
microscopy showed that the sample synthesized via the microwave-assisted hydrothermal
method displayed the largest and most regular nanoplates. The ZA, ZP, and ZU nanoplates
presented similar characteristics, that is, thinner nanoplates with irregular borders. In
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particular, the ZP sample exhibited the highest specific surface area, while the ZM sample
displayed the lowest, which was expected due to its size distribution. The morphological
characteristics of the nanoplates were maintained in the films after their deposition and
heat treatment. The gas-sensing analysis in dark mode showed that the ZnO nanoplates
were sensitive to ozone gas at room temperature even in the absence of UV light stim-
ulation, with a slightly better response under continuous UV irradiation. However, the
recovery of baseline resistance was only observed under UV, which was associated with
the enhanced desorption of adsorbed oxygen species after reacting with photogenerated
holes. All sensors exhibited an improved response to ozone at distinct concentrations, with
minor differences among them. The best performance was achieved by the ZM, likely
due to its larger and more regular nanoplate morphology, which contributed to a lower
baseline resistance resulting from increased photoconduction. In contrast, the ZU sample
presented the lowest sensitivity, explained by its high baseline resistance and enhanced
depletion layer effect. Despite these variations, all sensors demonstrated appreciable ozone
sensitivity at room temperature under UV light stimulation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors13040152/s1, Figure S1: Gas sensing workbench used
to assess the ozone-sensing properties of the zinc oxide nanoplates; Figure S2: Fourier-transformed
infrared spectroscopy (FTIR) of the zinc oxide nanoplates; Figure S3: Thickness and top surface
area distribution for the ZnO nanoplates synthesized by precipitation, ultrasonic-assisted, ultrasonic
tip-assisted, and microwave-assisted hydrothermal methods; Figure S4: Estimated band gap energies
(Egap) of the ZnO nanoplates; Figure S5: UV light-assisted ozone sensing response during six
exposure cycles of 10 ppb of ozone gas [26,75–85].
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Abbreviations
The following abbreviations are used in this manuscript:

UV Ultraviolet
VOC Volatile organic compounds
WHO World Health Organization
MOS Metal oxide semiconductors
MAH Microwave-assisted hydrothermal
ZA Sample prepared using the precipitation method
ZU Sample prepared using ultrasound-assisted method
ZP Sample prepared using the ultrasonic-tip-assisted method
ZM Sample prepared using the microwave-assisted hydrothermal method
BET Brunauer–Emmett–Teller method
FE-SEM Field-emission scanning electron microscopy
DRS Diffuse reflectance spectroscopy
PL Photoluminescence spectroscopy
XRD X-ray diffraction
LO Longitudinal optical
TO Transverse optical
CB Conduction band
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