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Inorganic biomimetic nanoparticles with intrinsic similarities of 
scale and conformation to biomolecules are considered the next 
generation of artificial enzymes1–5. Fundamental approaches to 

exploiting and screening the activities of nanozymes have been 
developed to support this interesting research direction6–10, and the 
demand for a biomimetic DNA endonuclease in living cells is grow-
ing across the sciences11–14.

DNA endonucleases are basic functional enzymes in biological 
systems that recognize and cleave specific DNA sequences at pre-
determined sites15, making them significant tools for the physical 
mapping of chromosomes, nucleotide sequence analyses, target 
gene isolation and DNA recombination16–19. Artificial methods have 
been reported for the design of biomimetic restriction enzymes7,20. 
However, their cleavage site recognition still relies on engineered 
nucleotide sequences, and, so far, no known abiotic material with 
DNA targeting function has been achieved.

Semiconductor nanoparticles, also known as quantum dots, 
display surface-binding properties and size-dependent characteris-
tics21–31. Based on previously reported specific interactions among 
chiral molecules and nanoparticles32,33, cadmium telluride (CdTe) 
nanoparticles stabilized with cysteine (Cys, 1) were used here as 
a biomimetic endonuclease for DNA scission (the proposed prin-
ciple is presented in Fig. 1). Under illumination with either left- or 
right-handed circularly polarized light (CPL; LCP or RCP, respec-
tively) provided by a 405 nm laser, the DNA was selectively cut by 
the nanoparticles between the T and A bases of the restriction site 
GATATC. Meanwhile, different ligands of CdTe nanoparticles were 
screened for specific cutting. Noticeably, the proposed artificial DNA 
endonuclease reaction was carried out well in living cells and in vivo.

Results and discussion
Chiral CdTe nanoparticle preparation and characterization. 
We first synthesized water-soluble chiral nanoparticles. Truncated 

tetrahedral shape d- or l-Cys-modified CdTe nanoparticles with 
a diameter of 4.5 ±​ 0.3 nm were produced as described previously 
(Fig. 2a,b)34. Salmon sperm DNA, a natural double-stranded DNA 
of approximately 1,839 bp, which emits a circular dichroic (CD) 
signal at 200–320 nm (Supplementary Fig. 1), was used as cleavage 
substrate35. The d- and l-Cys-modified CdTe nanoparticles demon-
strated broad mirror CD features between 350 and 410 nm (Fig. 2c  
and Supplementary Fig. 2). The l-Cys CdTe nanoparticles have a 
negative signal and the d-Cys CdTe nanoparticle signal is positive 
at these wavelengths. After the CdTe nanoparticles were mixed with 
DNA, the CD spectrum of the CdTe nanoparticles showed no obvi-
ous peak changes in the visible region (Supplementary Fig. 2)36.

After the l-Cys CdTe–DNA mixture was illuminated with RCP 
for 2 h, the CD spectrum of the l-Cys CdTe showed distinct chi-
roptical activity at 365, 415, 470 and 488 nm, which are within the 
absorption bandgap transition (Fig. 2d and Supplementary Fig. 2). 
d-Cys CdTe combined with DNA and illuminated with LCP showed 
a corresponding mirror CD performance, demonstrating that CPL 
photons are capable of stimulating the reaction37. The accompanying 
geometric transformation was also examined with transmission elec-
tron microscopy (TEM), three-dimensional (3D) tomography and 
synchrotron small-angle X-ray scattering (Supplementary Figs. 3–5).  
The predominant products were nanorods with a total length of 
20 ±​ 2 nm and total width of 5 ±​ 0.25 nm. The elemental Te content 
of the nanoparticles specifically increased after illumination for 2 h, 
which was confirmed with energy dispersive spectrometric mapping 
and inductively coupled plasma mass spectrometry (Supplementary 
Figs. 6 and 7). These results indicate the partial transformation of 
Te2− to Te (Supplementary Fig. 8), which is consistent with previ-
ous reports38. The progression of nanorod formation with time 
was recorded with both CD spectroscopy and TEM. In the TEM 
images, the tetrahedral nanoparticles had an increased diameter 
(6 nm) after 0.5 h (Supplementary Figs. 9 and 10) and had evolved 
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into elliptical nanoparticles at 1 h (Supplementary Figs. 11 and 12). 
When the irradiation time was extended to 1.5 h (Supplementary 
Figs. 13 and 14), the aspect ratio increased to 3.5, and the absorp-
tion peaks and CD signals were redshifted (Supplementary Fig. 15). 
During this process, the fluorescence of the solution changed from 
the initial wavelength of 620 nm to 630 nm, with reduced intensity, 
and there was a positive correlation between fluorescence intensity 
and the concentration of DNA substrate (Supplementary Fig. 16).

Ligands of CdTe nanoparticles, including glutathione (GSH, 2), 
N-isobutyryl-l-cysteine (3), dipeptide (Cys-Phe, 4), achiral 2-mer-
capto acetic acid (TGA, 5), N-acetyl-l-cysteine (6) and l-cysteine 
methyl ester hydrochloride (7), were screened for DNA cutting 
(Fig. 2e–h). Interestingly, the CD signals from the nanoparticles in 
control groups did not differ before and after illumination, consis-
tent with the TEM data (Supplementary Figs. 17–33). These results 
demonstrate that the chiral Cys ligand is an essential reactive spe-
cies in the whole reaction process.

Site-selective DNA cleavage. The DNA scission activity of the 
chiral nanoparticles was analysed with agarose gel electrophore-
sis39. The original salmon sperm DNA used, registered in GenBank 
under accession no. NC_017838.1, has a 1,839 bp sequence 

(Supplementary Table 1). On exposure to l-Cys CdTe under RCP 
illumination for 0.5 h, the DNA was gradually separated into differ-
ent fragments (Fig. 3a). When the exposure period was increased to 
1 h, weak bands representing two DNA fragments were apparent, 
arising from an incomplete reaction, but indicating a nuclease-like 
activity. After irradiation for 2 h, all the 1,839 bp DNA was com-
pletely separated into two distinct DNA fragments. A comparison 
of the electrophoretic image of the products after 5 h with earlier 
images demonstrated that the photoinduced cleavage reaction of the 
chiral nanoparticles was completed in 2 h. Like l-Cys CdTe, d-Cys 
CdTe displayed a strong DNA-cutting capacity at a specific DNA 
sequence (Fig. 3b), whereas the other ligands-modified CdTe had 
no obvious effect (Fig. 3g–i and Supplementary Figs. 34–36). This 
further confirmed that the Cys ligand on the CdTe surface plays a 
crucial role in DNA-specific cleavage.

To determine the cleavage site, the two DNA fragments were 
extracted from the gel and sequenced. Sequence-specific DNA 
cleavage occurred at the position between thymine (T, 1,083) and 
adenine (A, 1,084) (numbering from the 5′​ end to the 3′​ end).  
The sequenced lengths of the two fragments (1,083 bp and 756 bp) 
after nanoparticle digestion were consistent with the electrophoretic 
images (Supplementary Tables 2 and 3). To clarify the cutting prop-
erty of the chiral nanoparticles, we first examined the influence of 
the DNA length. A 90 bp DNA fragment corresponding to a par-
tial salmon sperm (1,839 bp) sequence containing the cutting site 
in the middle of the DNA was prepared (Supplementary Table 4). 
As shown in Fig. 3c, a DNA band of 45 bp was detected with elec-
trophoresis after exposure. An 80 bp DNA fragment was not cut by 
the l-Cys nanoparticles during RCP illumination, although it had 
almost the same nucleotide sequence as the cut 90 bp DNA frag-
ment (Fig. 3d). This was also observed when the d-Cys nanopar-
ticles were combined with the 80 bp DNA under LCP, when no  
CD or morphological changes were observed (Supplementary  
Figs. 37–39). When the 90 bp DNA fragment was converted into a 
single strand with the same sequence, the electrophoretic band after 
the reaction was the same as the band before the reaction, indicating 
that only doubled-stranded DNA is cleaved by the CdTe endonucle-
ase (Fig. 3e and Supplementary Figs. 40–42).

The band products from Fig. 3c were analysed by DNA sequenc-
ing, which showed that the 90 bp DNA was cut into 45 bp sections 
at the middle of the sequence between bases T and A, as shown in 
Supplementary Table 4. To screen the recognized sequence, series 
experiments with mutated DNA fragments were designed. We first 
changed the splicing sequences of the cutting site (AGAT′​TACC). 
The chiral CdTe exerted no enzyme-like activity on the mutated 
DNA (Fig. 3f and Supplementary Figs. 43 and 44). We then pre-
pared DNAs corresponding to the 90 bp sequence upstream or 
downstream from the cutting site, each of which contained half the 
original sequence. The CdTe shape in TEM images, the CD spectra 
and the electrophoretic bands remained unchanged (Supplementary 
Figs. 45–50). We then retained the DNA sequence upstream from 
the cutting site but created a point mutation in the downstream 
sequence. Interestingly, when the first three bases (with sequence 
ATC) were included, the corresponding DNA was cut by the chi-
ral nanoparticles, with distinctive changes in their morphology and 
the corresponding CD shape (Supplementary Figs. 51–59). When 
the integrity of the downstream sequence was maintained, the 
DNA was cut when the upstream DNA sequence ended with bases 
GAT (Supplementary Figs. 60–68). Meanwhile, we tested DNA in 
which the sequences upstream and downstream from the target site 
were exchanged (ATCGAT). No CD or DNA cleavage effect was 
observed (Supplementary Figs. 69–74). Notably, the endonuclease 
developed here was stable under extreme conditions of 0 °C and 
50 °C (Supplementary Figs. 75–76). These results show that the 
photoactive chiral CdTe nanoparticles have an unprecedented site-
selective DNA cleavage capacity, with a target cleavage site between 
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Fig. 1 | Strategy for site-selective DNA cleavage. a, Schematic illustration 
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bases T and A in the GATATC recognition sequence from the 5′​ 
end to the 3′​ end, when the whole fragment length is over 90 bp 
(Supplementary Figs. 77–84).

Specific binding between the target DNA and chiral nanopar-
ticles. To understand how CPL causes specific DNA cleavage, the 

thermodynamic effect between DNA and the chiral CdTe nanopar-
ticles was investigated with isothermal titration calorimetry 
(ITC)30. The interaction between l-Cys CdTe nanoparticles and 
the 90 bp DNA fragment showed a high affinity (binding constants 
of (2.61 ±​ 0.32) ×​ 105 M−1; Fig. 4a), and the d-Cys CdTe nanopar-
ticles had a similar binding constant (Supplementary Figs. 85–87).  
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Fig. 2 | Chiral CdTe nanoparticle preparation and characterization. a,b, TEM (a) and high-resolution TEM (b) images of truncated tetrahedron-shaped 
(white dashed areas) l-Cys and d-Cys CdTe nanoparticles. c, CD spectra of l-Cys and d-Cys CdTe nanoparticles (NPs). d, CD spectra of l-Cys and d-Cys CdTe 
nanoparticles mixed with 1,839 bp DNA and illuminated under 405 nm RCP/LCP for 2 h. e,f, CD spectra of l-GSH and d-GSH CdTe nanoparticles before (e) 
and after (f) being mixed with 1,839 bp DNA and illuminated under 405 nm LCP/RCP for 2 h. g,h, CD spectra of l-Cys-Phe and d-Cys-Phe CdTe nanoparticles 
before (g) and after (h) being mixed with 1,839 bp DNA and illuminated under 405 nm LCP/RCP for 2 h. All experiments were performed in triplicate.
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However, the 80 bp DNA ((4.13 ±​ 0.24) ×​ 103 M−1) and the mutated 
DNA ((3.61 ±​ 0.23) ×​ 103 M−1) showed limited affinity for the 
nanoparticles compared with that for the 90 bp DNA. Therefore, 
the association between the Cys-modified nanoparticles and the 
90 bp DNA was stronger than for the other sequences. These experi-
ments further confirm that DNA length and scission selectivity are 
essential elements of the developed cutting platform. Moreover, 
significant evidence from the transient absorption spectrum dem-
onstrated that the recovery time of the nanoparticles was reduced 
after mixed with 90 bp DNA, which could facilitate the cutting reac-
tion by accelerating electron transport (Fig. 4b and Supplementary 

Figs. 88–90). This can be explained as follows. First, the nanopar-
ticles showed a high affinity for the specific sequence in 90 bp DNA. 
Second, the alternating A and T bases are especially flexible, which 
is highly consistent with previous reports40,41.

The specific cutting process was persuasively verified by chang-
ing the location of the recognition sequence (GAT′​ATC) in the 90 bp 
DNA (Fig. 4c–g and Supplementary Fig. 91). Mutated 90 bp DNA 
fragments with the recognition sequence GAT′​ATC located at the 
5′​ end or 3′​ end, were constructed, respectively. After 2 h illumina-
tion with nanoparticles, the electrophoretic band and CD spectrum 
had not changed relative to those when the recognition sequence 
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was located in the middle of the DNA (Fig. 3c), confirming that the 
mutated 90 bp DNA was not cut under these conditions. The ITC data 
show that the binding constant is rather weak between the mutated 
90 bp DNA and the l- or d-Cys CdTe: (2.64 ±​ 0.39) ×​ 103 M−1 or 
(2.53 ±​ 0.45) ×​ 103 M−1, respectively, for mutated 90 bp DNA-12, and 
(2.13 ±​ 0.28) ×​ 103 M−1 or (2.53 ±​ 0.34) ×​ 103 M−1, respectively, for 
mutated 90 bp DNA-13 (Supplementary Figs. 92 and 93). A positive 
control was included, in which all the non-specific sequences in the 
90 bp DNA fragment were altered, but the GAT′​ATC in the middle 
was retained. The results showed that the DNA (with binding con-
stants of (1.25 ±​ 0.39) ×​ 105 M−1 or (1.24 ±​ 0.43) ×​ 105 M−1 for l- and 
d-Cys nanoparticles) was gradually cleaved, indicating that the rec-
ognition sequence GAT′​ATC in the middle of the 90 bp DNA exerts 
a conformational variation during DNA scission (Supplementary 
Figs. 94–97). With respect to the experimental evidence of a tetra-
hedral shape (Fig. 2b), several previous works have provided evi-
dence that small nanoparticles with zinc-blende structure have a 
truncated tetrahedral shape, and the edges and apices have greatly 
preferred binding constants with specific sequences of DNA27,42–44. 
This finding further indicates the significance of the flexibility of 
the alternating A and T bases in the recognition sequence.

Mechanism of DNA cleavage. It has recently been reported that 
reactive oxygen species (ROS) are critical for both selective oxidation  

and DNA lesions, and may therefore play major roles in our catalytic 
system45,46. Therefore, we used a 2′​,7′​-dichlorodihydrofluorescein 
(DCFH) probe to monitor ROS production by the DNA-combined 
chiral nanoparticles during irradiation (Fig. 5a and Supplementary 
Fig. 98)47. Simultaneously with DNA cleavage and nanorod for-
mation, the ROS content in the 90 bp DNA solution increased in 
response to light over time. However, when the mutated 90 bp DNA 
was combined with the chiral nanoparticles, there was no ROS 
response to CPL exposure for 5 h (Supplementary Fig. 99). The 
same negative results were obtained with the 80 bp DNA and the 
GSH-modified nanoparticles (Supplementary Figs. 100 and 101). 
To exclude the possible effects of the DNA, a control experiment 
using the 90 bp DNA and a ROS inhibitor (NaN3) was performed, 
and no changes in the ROS levels or DNA cleavage were observed 
(Fig. 5c and Supplementary Fig. 102). Therefore, ROS are crucial 
for DNA cleavage in our system. It is known that DNA sequences 
are connected by a phosphodiester bond between bases48. As shown 
in Fig. 5d, the selective DNA cleavage in our experiment indicates 
that the phosphodiester bond between bases T and A is broken 
through photoinduced ROS oxidation. To identify the kinds of ROS 
that cause the final DNA cleavage, assays of the main ROS species 
were performed. Figure 5a,b and Supplementary Figs. 103 and 104 
present the data for singlet oxygen, superoxide and hydroxyl radical 
production when the chiral nanoparticles are combined with 90 bp 
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DNA. Significantly, only the hydroxyl radical content in both the 
d-Cys- and l-Cys-modified nanoparticle mixtures increased under 
LCP and RCP illumination. The chiral CdTe nanoparticles displayed 
specific nuclease-mimetic activity under the corresponding CPL. 
To determine the differences in the reaction rate when the same 

enantiomer was exposed to different polarized light scattering, the 
ROS levels produced by d-Cys or l-Cys nanoparticles under RCP 
or LCP activation were monitored (Fig. 5b). ROS production by 
the chiral nanoparticles was clearly affected by the different polar-
ization directions with the same exposure time (Supplementary  
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Figs. 105–107). Therefore, we compared the cleavage rates of the 
chiral nanoparticles under different CPL. Consistent with the ROS 
yield, the electrophoresis results showed that the l-Cys nanoparticles 
had a higher cleavage rate under RCP than under LCP, and the d-Cys 
nanoparticle rates were opposite (Supplementary Figs. 108–117).  
This difference can be attributed to the differential absorption 
efficiency of the chiral nanoparticles under CPL49. Four lambda 
DNA sequences were performed to confirm the specific cutting of 
Cys-modified CdTe (Supplementary Fig. 118 and Supplementary 
Tables 5–8). The experiments showed that the chiral semiconductor 
nanoparticle could be applied to the DNA selective scission in frag-
ment length, site, and sequence specific through the chiral ligand 
of Cys recognition. It was also revealed that the nanoparticles, as 
electron donors, induced ROS generation, while the DNA was the 
receptor, leading to phosphodiester bond cleavage.

DNA selective cleavage simulation. We devised a modelling strat-
egy by using quantum chemically calculated interaction energies 
within a standard statistical mechanics framework (Supplementary 
Figs. 119–137). The free energy landscapes provide direct evidence 
for the preferential adsorption of A and T on the same groove along 
the edge, closer to the middle of the nearest face of the tetrahedral 
nanoparticle than to the nearest corner, while C and G were found 
preferrably in different hot spots, both closer to the nearest corner 
than to the middle of the nearest face. Thus, the GAT′​ATC sequence 
contains a central segment of four consecutive bases that have a 
large affinity for the same groove along the edge of the nanoparticle, 
while the two termini of this sequence are expected to be found 
closer to the corners at both ends of the nanoparticle edge (Fig. 5e–h 
and Supplementary Figs. 138 and 139). The results indicate that the 
Cys-modified CdTe nanoparticles could specifically target the rec-
ognition sequence of GAT′​ATC within the DNA helix.

The cleavage process was theoretically investigated with density 
functional theory (DFT) calculations (Supplementary Figs. 140–143).  
The results definitively show that the DNA could be efficiently 
cleaved after complementary attachment to the Cys-modified CdTe.

Photoinduced DNA cleavage in living cells and in vivo. To explore 
the endonuclease activity in a complex physiological environ-
ment, we utilized this photoactivated DNA cutting system in liv-
ing cells and in vivo. The 90 bp DNA fragment was labelled with 
a molecular beacon (fluorescent dye Alexa Fluor 700 (AF700) and 
a quencher [BHQ3]) at the recognition site to visualize the whole 
cleavage process with fluorescent signals (Fig. 6a)50. When polyeth-
ylene glycol (PEG)-coated chiral CdTe nanoparticles (emission at 
620 nm) were used, cell viability was over 90% after incubation for 
24 h (Supplementary Fig. 144). Following exposure to CPL for 2 h, 
the cutting system produced an intense fluorescent signal at 720 nm, 
indicating the successful cleavage of the DNA in vitro (Fig. 6b).  
However, the mutated DNA sequence produced no fluorescent sig-
nal under the same conditions (Supplementary Fig. 145). Human 
cervical cancer cells (HeLa, ATCC CCL-2) and rat fetal neural 
stem cells (stem cells (neural), Gibco N7744100) were transfected 
with the labelled 90 bp DNA and then incubated with the PEG-
coated chiral CdTe for 5 h, respectively (Supplementary Fig. 146).  
Intracellular fluorescence was tracked with confocal microscopy 
after CPL exposure for 2 h. As the incubation time increased, the 
intensity of the AF700 fluorescence from the specific cleavage frag-
ments under CPL irradiation increased markedly, and co-local-
ized with the corresponding nanoparticles (Fig. 6c,d,h,i). Notably, 
no AF700 fluorescence was recorded after any incubation period 
without irradiation (Fig. 6e,j). Consistent with the in vitro results, 
cells containing the mutated 90 bp DNA or with the molecular 
beacon tagged at a non-cleavage site or with GSH CdTe displayed 
almost no signal in the AF700 channel (720 nm) (Fig. 6f,g,k,l and 
Supplementary Figs. 147 and 148). These results demonstrate that 

the recovered fluorescence originated from specific DNA scission in 
living cells by the chiral nanoparticles. In addition, we examined the 
chiral nanoparticles with bio-TEM after the photoinduced reaction. 
Interestingly, the nanoparticles combined with the 90 bp DNA in 
living cells were transformed into nanorods, whereas the nanopar-
ticles remained unchanged when the cells contained the mutated 
90 bp DNA sequence (Supplementary Figs. 149–154). To further 
confirm the feasibility of the photoactivated DNA cleavage system 
in vivo, HeLa tumour-bearing nude mice were prepared and trans-
fected with the 90 bp DNA molecular beacon. The mice were then 
intravenously injected with the chiral nanoparticles. Nanoparticle 
fluorescence was recorded in the in vivo imaging system, and 
showed that the nanoparticles had accumulated at the tumour site 
12 h after injection (Supplementary Fig. 155). To directly assess the 
effects of DNA cleavage on the tumour, the mice were exposed to 
660 nm CPL for 2 h. Fluorescence at 720 nm was observed as an 
intensive signal at the tumour site, indicating that the DNA in the 
tumour was effectively cut by both the d-Cys- and l-Cys-modified 
nanoparticles (Fig. 6m,n). No signal was observed in the mutated 
DNA group or without irradiation, which strongly demonstrates 
that the fluorescence was induced by photoinduced DNA cleav-
age (Fig. 6o,p and Supplementary Fig. 156). The experimental data 
confirm that the developed photoactive chiral nanoparticles can be 
successfully applied in living cells and in vivo as biomimetic endo-
nucleases to cut DNA with the presented fragment length, site and 
specificity.

Conclusion
We have developed a novel biomimetic sequence-specific DNAzyme 
reaction with Cys-modified nanoparticles under CPL. The findings 
show that DNA over 90 bp can be specifically and efficiently cleaved 
between bases T and A at the recognition site GAT′​ATC, while 
the nanoparticles are transformed into Te-rich nanorods, with a  
distinct change in CD signal. Significantly, this work shows that 
the photoinduced DNA cutting platform performs well in vivo, 
with high efficiency and biocompatibility. Our findings provide 
new insights into the interactions between biomolecules and chiral 
nanomaterials, which will undoubtedly open up new applications 
for abiotic materials as novel tools in gene analysis, manipulation 
and life science.

Methods
Synthesis of d- or l-Cys stabilized CdTe nanoparticles. Briefly, the precursor 
solution was prepared by the reaction of 0.05 g of Al2Te3 with 4 ml of 0.5 M H2SO4 
(strictly protected under a N2 atmosphere). The precursor gas (H2Te) generated 
was then passed through 0.985 g of Cd(ClO4)2·6H2O in 125 ml of water containing 
3 ml of 1 M d- or l-Cys/GSH as the stabilizing agent. The optimized pH of 12 was 
adjusted with a 1 M solution of NaOH under a nitrogen-saturated atmosphere. 
The reaction mixture was then refluxed at 110 °C in an oil bath under N2 gas for 
8 h. The flow rate of the N2 gas was accurately maintained at 100 ml min−1 during 
the entire synthesis process. The chiral CdTe nanoparticles obtained were purified 
by centrifugation with 2-propanol and resuspended in phosphate-buffered saline 
(PBS; 0.01 M, pH 7.4) for further use.

DNA cleavage by chiral Cys stabilized CdTe nanoparticles. DNAs were 
suspended in deionized water to a final concentration of 100 μ​M. DNA (50 μ​l of 
1 μ​M) was mixed with 50 μ​l of 50 μ​M newly synthesized chiral nanoparticles in 
PBS solution. The mixture was then illuminated with CPL for different times in a 
quartz cuvette with an optical path length of 1 cm. A 405 nm laser was used as the 
light source, and the laser emission was transformed to CPL by directing it through 
a linear polarizer and a quarter-wave plate with a ±​45° transmission angle.

Agarose gel electrophoresis. Agarose gel electrophoresis was performed as 
follows. After the DNA samples were illuminated with the chiral nanoparticles, 
they were separated by ultrafiltration centrifugation (3 kDa MWCO Millipore) 
in PBS. The purified DNA samples (10 μ​l) in PBS were then mixed with 2 μ​l of 
loading buffer and separated on 1.7% (for 1,839 bp DNA) or 3% (for 90 bp DNA) 
agarose gel in 0.5×​ TBE buffer containing ethidium bromide. Electrophoresis was 
performed at 100 V for 50 min. Electrophoretic images were captured with a Bio-
Rad GelDoc XR System with Imaging Lab software.
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Photoactivated DNA cleavage system in vivo. All animal procedures were 
performed according to institutional ethical guidelines and were approved by the 
Committee on Animal Welfare of Jiangnan University. The HeLa-tumour-bearing 
mice were randomly divided into different groups (five mice per group), and then 
intravenously injected with AF700-labelled 90 bp DNA or AF700-labelled mutated 
90 bp DNA with the transfection reagent Invivofectamine 3.0 Reagent (Thermo 
Fisher Scientific). Briefly, 100 μ​l of 5 mM DNA in PBS was gently mixed with 100 μ​l 
of transfection reagent. The mixture was diluted sixfold and 200 μ​l was injected 
into each mouse at the tumour site. PEG-coated chiral nanoparticles (100 nM) were 
intravenously injected into the mice and the fluorescence was recorded at different 
time points with the 620 nm channel of an IVIS Spectrum In Vivo Imaging System 
(PerkinElmer). At 12 h after injection, the nanoparticles had accumulated at the 
tumour site. A 660 nm laser was used as the light source, and the laser emission was 
transformed to CPL by directing it through a linear polarizer and a quarter-wave 
plate with a ±​45° transmission angle. The mice were then irradiated under RCP or 
LCP for 2 h, and fluorescence was recorded at 720 nm.

Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The data supporting the findings of this study are available 
within the paper and its Supplementary Information and are available from the 
corresponding author upon reasonable request.
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