
Vol.: (0123456789)
1 3

https://doi.org/10.1007/s11270-022-05604-x

Effects of α‑Ag2WO4 crystals on photosynthetic efficiency 
and biomolecule composition of the algae Raphidocelis 
subcapitata

Cínthia Bruno de Abreu · Renan Castelhano Gebara · Larissa Luiza dos Reis · Giseli Swerts Rocha · 
Lays Oliveira Gonçalves Alho · Laís Mendes Alvarenga · Luciano Sindra Virtuoso · Marcelo Assis · 
Adrislaine da Silva Mansano · Elson Longo · Maria da Graça Gama Melão

Received: 15 December 2021 / Accepted: 23 March 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

(maximum quantum yield and oxygen-evolving 
complex—OEC). The α-Ag2WO4 reduced cell den-
sity by ~ 48% already in the first 24  h of exposure 
at 31.76  μg L−1 (highest concentration). Moreover, 
at 31.76  μg L−1, we observed a drastic reduction in 
the maximum quantum yield, and impact in the oxy-
gen evolving complex at 24  h and 48  h. However, 
our results indicated a possible recovery of the pho-
tosynthetic activity in the surviving algal cells at 72 
and 96 h. The contents of chlorophyll a (Chl a) and 
total carbohydrates decreased significantly (Dunnett’s 
test, p < 0.05) at 4.11, 5.84, 10.55, and 10.67 μg L−1 
treatments and increased significantly (Dunnett’s test, 
p < 0.05) at the highest concentration (31.76 μg L−1), 

Abstract  The α-Ag2WO4 (hexagonal rod-shaped) 
is a multifunctional material with interesting physi-
cal and chemical properties, such as good electronic, 
photocatalytic, anticancer and microbicidal perfor-
mance. Considering this, its use can contribute to 
the presence and accumulation of this compound in 
freshwater ecosystems. Therefore, the present study 
investigated the effects of α-Ag2WO4 on the fresh-
water Chlorophyceae Raphidocelis subcapitata, at 
the level of cell density, chlorophyll a (Chl a), total 
carbohydrate contents, and photosynthetic activity 
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which is possibly a mechanism for the algal cells 
to optimize the amount of energy to be used in the 
photosynthetic process and maintaining the integrity 
of the cell wall. This study contributes to clarifying 
how α-Ag2WO4 interacts with R. subcapitata¸ show-
ing the toxicity mechanism of photosynthetic activity. 
This can help predict the fate and effect of these com-
posites by providing a basis for their ecological risk 
assessment.

Keywords  Silver tungstate · Toxicity · 
Chlorophyceae · Phyto-PAM · Photosynthetic 
efficiency

1  Introduction

Given the great applicability of alpha-silver tung-
state  (α-Ag2WO4) crystals (Assis et  al., 2020; Cruz 
et al., 2020; Macedo et al., 2019; Nobre et al., 2019; 
Penha et al., 2020), mainly in photocatalysis (Macedo 
et  al., 2018) and microbicidal activity (Assis et  al., 
2018, 2019; Foggi et  al., 2017; Laier et  al., 2020; 
Longo et al., 2014), its increase in natural ecosystems 
is expected. Increased concentrations of α-Ag2WO4 in 
the environment may occur due to the recovery of the 
semiconductor from the reaction mixture (consisting 
of the catalyst and the substance to be degraded) is 
not always possible, favoring the presence and accu-
mulation in water bodies (Kumari et al., 2019; Matos 
et  al., 2020). In addition, particles can be absorbed 
into the soil and carried to water bodies (Dewez et al., 
2018) and are a source of ionic silver release into 

aquatic ecosystems, which can pose serious threats to 
their biota (Navarro et al., 2008).

Among the organisms that make up aquatic envi-
ronments, phytoplankton contributes significantly to 
nutrient cycling (fixing carbon), oxygen production 
and is responsible for a large part of overall primary 
productivity (Baracho et al., 2019). As microalgae are 
at the base of aquatic food webs, any modification of 
the photosynthesis process through damage to their 
photosynthetic apparatus can affect higher trophic 
levels and, consequently, reach the entire ecosystem 
(Kahru & Dubourguier, 2010). Fast and relatively 
simple methods, such as the parameters obtained in 
Phyto-PAM and the chlorophyll a (Chl a) content, 
can indicate the physiological health in primary pro-
ducers, i.e. algae and higher plants (Juneau et  al., 
2005). It is known that several environmental factors 
affect the physiological state of autotrophs by impair-
ing photosynthesis or biochemical processes, and 
therefore the measurement of photosynthetic param-
eters is important and reliable to identify environ-
mental stress (Juneau & Popovic, 2000; Rocha et al., 
2021). Furthermore, macromolecules such as carbo-
hydrates are essential in photosynthetic and respira-
tory processes (Martínez-Ruiz & Martínez-Jerónimo, 
2015), energy storage, and the structural component 
of the cell wall (Markou et  al., 2012). When micro-
algae are exposed to stressful conditions, changes 
often occur in the amount of carbohydrates (Rossi 
et al., 2018). Some studies show that different species 
of microalgae can alter the amount of carbohydrates 
when exposed to different types of contaminants 
(Alho et  al., 2020; Huang et  al., 2016; Silva et  al., 
2018). Thus, assessing the content of carbohydrates 
of Raphidocelis subcapitata provided relevant infor-
mation about α-Ag2WO4 toxicity.

In this context, given the great applicability of 
α-Ag2WO4 combined with the lack of studies regard-
ing its effects on the physiology and biochemical 
composition of microalgae in general; and consider-
ing the importance of these autotrophic organisms 
for aquatic ecosystems, our objective was to evaluate 
the effects of α-Ag2WO4 on photosynthetic activity, 
biological molecules and cell density of the Chlo-
rophyceae R. subcapitata. This study contributes to 
clarifying and understanding how α-Ag2WO4 inter-
acts with R. subcapitata¸ showing the toxicity mecha-
nisms on photosynthetic activity, providing informa-
tion that can help predict the fate and effects of these 
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compounds. In addition, our study provides a basis 
for their ecological risk assessment.

2 � Material and methods

2.1 � Synthesis and characterization of α‑Ag2WO4

The samples of α-Ag2WO4 were synthesized using 
the coprecipitation (CP) method in aqueous medium, 
according to Macedo et al. (2018). The hydrodynamic 
size, polydispersity index (PdI), and zeta potential 
of the particles were measured in exposure medium 
and in ultrapure water at 0, 24, 48, 72, and 96 h by 
dynamic light scattering (DLS) using Zetasizer Nano 
ZS90, Malvern. The results from 0 and 96  h are 
described in our previous study (Abreu et al., 2022). 
The results from 24, 48, and 72  h are presented in 
Table S1 (Supplementary material). Silver concentra-
tions in α-Ag2WO4 test solutions used in the toxicity 
tests (data not shown) were determined by inductively 
coupled plasma mass spectrometry (ICP-MS Perki-
nElmer NexION 2000) (Abreu et al., 2022).

2.2 � Algal cultures

The cosmopolitan freshwater microalga R. sub-
capitata (Chlorophyceae), which is recommended 
in international standards for ecotoxicological test-
ing (OECD, 2011), was cultivated in CHU-12 
culture medium (CHU, 1942) (Table  S2, Supple-
mentary material) at 25 ± 1 ºC, with a light inten-
sity of ≅ 130  μmol photon m−2  s−1 LED light and 
12 h/12 h of light/ dark photoperiod. The pH values 
were around 7 – 8.5 and did not vary by more than 
1.5 units. The toxicity tests followed the same culture 
conditions. We used a bath sonicator (Ultra cleaner 
1400 Unique, Brazil) for 30  min to disperse the 
α-Ag2WO4 in ultrapure water and immediately after-
wards we prepared the test solutions. Exponentially 
growing R. subcapitata cells were inoculated (initial 
concentration of 1 × 105 cells ml−1) and exposed to 
the concentrations of 0.00, 4.11, 5.84, 10.55, 10.67, 
and 31.76 μg L−1 of α-Ag2WO4 for 96 h in 500 mL 
polycarbonate Erlenmeyers containing 250  mL of 
culture medium. These concentrations were chosen 
based on preliminary tests results. The toxicity tests 
followed the OECD (201) guidelines (OECD, 2011), 

with 3 tests performed, each one with triplicates for 
the control and treatments.

Every day, 1.8 mL of samples was fixed with for-
maldehyde buffered with borax (1% final concentra-
tion) and the cells were counted in a FACS Calibur 
cytometer (Becton Dickinson, San Jose, CA, USA) 
with a 15mW argon-ion laser (488  nm excitation), 
using 6 µm fluorescent beads as an internal standard 
(Fluoresbrite carboxylate microspheres; Polysciences, 
Warrington, Pennsylvania, USA). To identify the 
cells, we followed exactly the protocol described in 
Sarmento et al. (2008).

2.3 � PAM fluorescence measurements

We utilized an amplitude modulated fluorometer 
(PHYTO-PAM, Heinz Walz GmbH, Germany), 
equipped with an optical drive ED- 101US/MP, to 
perform chlorophyll a fluorescence measurements. 
Daily, 3 mL of each sample was left in the dark for 
15  min before measurements. The parameters F0 
(minimum fluorescence), FM (maximum fluores-
cence) and ΦM (maximum quantum yield) are pro-
vided by Phyto-PAM (Schreiber, 1986; Schreiber & 
Bilger, 1993). The efficiency of the oxygen evolving 
complex of PSII (F0 / FV, where FV = FM—F0) was 
also determined by the fluorescence emission from 
algal cells acclimated to the dark (Kriedemann et al., 
1985).

2.4 � Determination of chlorophyll a and total 
carbohydrates

We determined the amount of chlorophyll a with 
dimethylsulfoxide (DMSO) according to the meth-
odology described by Shoaf and Lium (1976). After 
extraction, we used Eq. (1) established by Jeffrey and 
Humphrey (1975) to quantify the content of chloro-
phyll a where E664 and E647 are the absorbance at 664 
and 647 nm λ, respectively.

Total carbohydrate quantification was determined 
based on the phenol–sulfuric reaction and anhydrous 
dextrose (Mallinckrodt Chemicals, USA) as a stand-
ard for the calibration curve, according to Liu et  al. 
(1973). A spectrophotometer (HACH Company, 

(1)Chla = 11.93E
664

− 1.93E
647
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Loveland, CO, USA) was used for the reading at 
485 nm.

2.5 � Statistical analysis

The IC50 (inhibitory concentrations) based on cell 
density rates were calculated by nonlinear regression 
logistic curves using Statistica 7.0 software (Stat-
soft Inc, 2004). Data were tested for normality and 
homogeneity of variance. Statistical analyses were 
performed using the SigmaPlot software version 11.0 
(Systat, 2008). Statistically significant differences 
among treatments and controls were determined 
using one-way ANOVA, followed by Dunnett’s post 
hoc multiple comparison test. For non-normal data, 
the Kruskal–Wallis test and multiple comparisons 
with Dunn’s test were performed. The statistical sig-
nificance level was defined as p < 0.05. The data were 
obtained from three experimental replicate cultures 
and are presented as the mean ± SD of the replicates. 
Uniquely for the total carbohydrate data, we normal-
ized these data using log transformation.

3 � Results and Discussion

The results of the microparticle characterization are 
available in Fig.S1 and Table  S1 (Supplementary 
Material). The α-Ag2WO4 particles were obtained 
with a hexagonal rod shape and orthorhombic struc-
ture (Fig.  1), and average transversal and longitudi-
nal sizes of 0.23 and 1.22 µm, respectively. Overall, 
the zeta potential values averaged between -5.39 and 
-12.8 mV, indicating electrostatic instability (Kleiven 
et  al., 2018, 2019; Lodeiro et  al., 2017), because 
the aqueous solutions considered stable have values 
around ± 30  mV (Stensberg et  al., 2011). The PdI 
values were higher than 0.22 ± 0.07, which indicated 
that the α-Ag2WO4 particles formed aggregates/
agglomerates.

We observed significant changes in algae growth 
when in contact with α-Ag2WO4 particles (Fig.  2). 
At 24 h there was a difference (Dunn’s test, p < 0.05) 
only between the control and the highest concentra-
tion (31.76  µg L−1), with a ~ 48% reduction. On the 
other hand, at 48  h, all treatments entailed signifi-
cant reductions (Dunnett’s test, p < 0.05) in the cell 
density. Finally, at 72 h the 3 highest concentrations 
(10.55, 10.67 and 31.76  µg L−1) caused significant 

reductions (Dunnett’s test, p < 0.05) in cell density 
and at 96  h the 2 highest concentrations (10.67 and 
31.76  µg L−1) reduced (Dunnett’s test, p < 0.05) the 
cell number when compared with the control. The 
IC50 based on relative growth rates (RGR), calculated 
according to Bao et  al., (2011), in a previous work 
(Abreu et al., 2022) was 13.72 ± 1.48 μg L−1 and the 
IC50 based on the cell density was 14.9 ± 1.05 μg L−1.

According to previous studies, materials with sil-
ver in their composition are highly toxic to aquatic 
biota, especially for microalgae, inhibiting growth, 
forming reactive oxygen species, DNA damage, 
among others (Abreu et  al., 2022; He et  al., 2012; 
Huang et  al., 2016; Lekamge et  al., 2020; Odzak 
et al., 2017; Sørensen et al., 2016). Even at very low 
concentrations, dissolved silver can compromise pho-
tosynthesis and growth in phytoplankton (Navarro 
et al., 2008). This can help to explain the growth inhi-
bition of R. subcapitata at the highest concentrations 
of α-Ag2WO4, which was probably due to the effects 
of the released silver ions into the medium and ROS 
production, as we observed in a previous study with 
α-Ag2WO4 (Abreu et al., 2022).

Regarding the photosynthetic activity, the maxi-
mum quantum yield, obtained via Phyto-PAM, 
indicates the amount of light used in photosynthe-
sis, providing information about the physiology of 
the microalgae (Herlory et  al., 2013). According 

Fig. 1   Field emission scanning electron microscopy (FE-
SEM) of the α-Ag2WO4 sample obtained by a Supra 35 VP, 
Carl Zeiss operated at 10 kV
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to Dewez and Oukarroum (2012), the decrease in 
maximum quantum yield values indicates a reduc-
tion in the ability of PSII to perform primary pho-
tochemical reactions. The results of the maximum 
quantum yield (ΦM) are shown in Fig. 3. After 24 h 
and 48  h of exposure, there was a drastic reduction 

(Dunn’s test, p < 0.05) of ~ 72% and ~ 78%, respec-
tively, of this parameter at the highest concentration 
tested (31.76 µg L−1). At 72 h, the concentrations of 
10.67 µg L−1 and 31.76 µg L−1 of α-Ag2WO4 caused 
a significant reduction (Dunnett’s test, p < 0.05) 
of ~ 4.5% and 35%, respectively, in the ΦM, when 

Fig. 2   Cell density 
(mean ± SD) of Raphi-
docelis subcapitata under 
α-Ag2WO4 -R exposure 
during 96 h. The concentra-
tions are expressed in µg 
L−1. Asterisks * represent 
a significant difference 
(Dunn’s test, p < 0.05; 
Dunnett’s test, p < 0.05) of 
treatments compared to the 
control group

Fig. 3   Maximum quantum 
yield (mean ± SD) of Raphi-
docelis subcapitata after 
24, 48, 72, and 96 h under 
α-Ag2WO4 exposure. Con-
centrations are expressed in 
µg L−1, where: C = control 
group and asterisks * repre-
sent a significant difference 
(Dunn’s test, p < 0.05; 
Dunnett’s test, p < 0.05) of 
treatments compared to the 
control group
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compared to the control. Finally, at 96  h there was 
a ~ 6% and 9% decrease (Dunnett’s test, p < 0.05) in 
10.67 and 31.76 µg L−1 concentrations, respectively. 
In light of this, our results indicate that the photosyn-
thetic apparatus was affected, especially at the highest 
concentration of α-Ag2WO4 (31.76 µg L−1), but this 
impairment was gradually reduced throughout the 
days of the experiment at this concentration, since the 
percentage of reduction of ΦM diminished from the 
first to the last day of treatment.

We observed that the efficiency of the oxygen-
evolving complex (F0/Fv) was significantly affected 
at the highest concentration tested of α-Ag2WO4. In 
general, at 31.76 µg L−1, F0/Fv it increased 9.3 times 
(Dunn’s test, p < 0.05) at 24 h and 11 times (Dunn’s 
test, p < 0.05) at 48 h, when compared to the control 
(Fig. 4). At 72 h, the increase was around 2.7 times 
(Dunn’s test, p < 0.05) and at 96  h it was about 1.3 
times higher than in control cells. High values of 
F0/Fv, especially on the first two days of exposure 
to α-Ag2WO4, indicate that possibly water-splitting 
apparatus was damaged (Alho et al., 2019; Reis et al., 
2021), which was already expected, due to the excel-
lent photocatalytic property of α-Ag2WO4 (Macedo 
et al., 2018). The OEC constitutes the water splitting 
system, where the water molecule is broken down in 
the presence of light and this process is responsible 

for the production of oxygen (Mattoo et  al., 1999). 
The composition of the OEC is basically formed 
by manganese atoms and proteins, which require 
the presence of chloride and calcium. Here, prob-
ably the silver ions released by the microcrystal have 
bound to chloride ions and this may have compro-
mised the water-splitting apparatus mainly in 24 and 
48 h. Therefore, we can assume that the water split-
ting apparatus was the main target of α-Ag2WO4, and 
the reduced maximum quantum yield was probably 
a consequence of the impacted OEC. Already in the 
last days of exposure, even with F0/Fv values signifi-
cantly different from the control, the not so high val-
ues indicate a recovery of the physiology of the algal 
cells that survived at the end of the ecotoxicity test.

Regarding Chl a content, we observed a decrease 
of ~ 41, 47, 52, and 43% (Dunnett’s test, p < 0.05) at 
concentrations of 4.11, 5.84, 10.55, and 10.67  μg 
L−1 of α-Ag2WO4, respectively (Fig.  5A). This is 
probably a result of reactive oxygen species produc-
tion, because the chloroplast is a site that favors ROS 
generation (Li et  al., 2015), as recently observed in 
a study by our research group (Abreu et  al., 2022). 
On the other hand, at the highest concentration of 
α-Ag2WO4 (31.76  μg L−1), the amount of Chl a 
increased ~ 47% (Dunnett’s test, p < 0.05), which is 
possibly a mechanism for the algal cells to optimize 

Fig. 4   Efficiency of the 
Oxygen Evolving Complex 
(F0/FV) (mean ± SD) of 
Raphidocelis subcapitata 
after 24, 48, 72, and 96 h 
under α-Ag2WO4 expo-
sure. Concentrations are 
expressed in µg L−1, where: 
C = control group and aster-
isks * represent a significant 
difference (Dunn’s test, 
p < 0.05; Dunnett’s test, 
p < 0.05) of treatments com-
pared to the control group
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the amount of energy to be used in the photosynthetic 
process (Alho et  al., 2020; Rocha et  al., 2021; Silva 
et al., 2018; Wacker et al., 2015), in order to compen-
sate for the stress caused by α-Ag2WO4 and maintain 
photosynthesis at high rates.

Following the same pattern as the Chl a content, 
the amount of total carbohydrates (Fig. 5B) decreased 
significantly ~ 3.6, 4.4, 2.7, and 4.5 times (Dunnett’s 
test, p < 0.05) at concentrations of 4.11, 5.84, 10.55, 
and 10.67 μg L−1 and increased ~ 3 times (Dunnett’s 
test, p < 0.05) at 31.76  μg L−1 of α-Ag2WO4. This 
is closely related to the higher production of Chl a, 
because the increased production of this pigment can 
enable greater amounts of CO2 to be fixed and then 
converted into carbohydrates (Chia et  al., 2015). 
Furthermore, under stress conditions, it is common 
that carbohydrate content in microalgae to increase 
(Rossi et  al., 2018), which may be related to a pro-
tective mechanism of the algal cells, thus maintaining 
the integrity of the cell wall. This biomolecule has 
structural and storage functions, supplying the energy 
demand necessary for the maintenance of metabolism 
and cell wall structure (Markou et  al., 2012), which 
explains why we observed higher carbohydrate con-
tent at the highest concentration (31.76  μg L−1) of 
α-Ag2WO4.

Considering that the percentage of reduction of 
ΦM values gradually diminished from 24 to 96  h at 
the highest concentration of α-Ag2WO4, and the F0/

FV values indicated a gradually less severe impact 
at this same concentration between the beginning 
and the end of the experiment. This pattern can be 
a consequence of the increase in the Chl a and car-
bohydrate content that occurred at this concentra-
tion (31.76  μg L−1) in the surviving cells. Probably 
an algal attempt to reduce the negative impacts of 
α-Ag2WO4, combined with the possible chelation of 
metals to dead cells, decreasing the metal available to 
the remaining cells.

4 � Conclusion

Our results showed evidence of toxic effects of 
α-Ag2WO4 crystals on the photosynthetic activity of 
the microalga R. subcapitata, through a drastic reduc-
tion of the maximum quantum yield and loss of effi-
ciency in OEC (increased values of F0/Fv), mainly in 
the first hours of exposure. Besides the physiological 
aspects, we observed a reduction in the cell density 
and an increase in the biomolecules, such as Chl a 
and total carbohydrates contents at the highest experi-
mental concentration of α-Ag2WO4, probably in an 
attempt to decrease the impacts of the α-Ag2WO4. 
At the end of the exposure, even with reduced cell 
number, the increased Chl a content possibly ena-
bled the remaining cells to compensate for the stress 
caused by α-Ag2WO4 and maintain photosynthesis, 

Fig. 5   Chlorophyll a content (mean ± SD) (A) and total carbo-
hydrates (mean ± SD) of Raphidocelis subcapitata after 96  h 
exposed to α-Ag2WO4 (B). C = control group and asterisks * 

represent a significant difference (Dunnett’s test, p < 0.05) of 
treatments compared to the control group
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which is also corroborated by the maximum yield 
and OEC values, indicating the tendency to recover 
the physiological health. The parameters evaluated 
in this study were efficient and sensitive, with sig-
nificant variations compared to the control group, 
which reinforces the importance of evaluating physi-
ological, populational (cell density) aspects, as well 
as biomolecules contents (as Chl a and carbohydrate) 
in ecotoxicity studies. Therefore, identifying the tar-
gets of α-Ag2WO4 contributes to the elucidation of 
the mechanisms of action of this semiconductor on 
the microalga R. subcapitata. The changes observed 
in the microalgae in this study may be harmful in the 
long term, because as these are autotrophic organ-
isms, impacts at the base of the food chain may pose 
threats to higher trophic levels. Thus, these data are 
useful for predicting and assessing risks caused by 
microcrystals.
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