O elemento químico Nióbio, um metal de transição, está localizado na família 5-B da tabela periódica. Seu símbolo químico é Nb e seu número atômico é 41. Devido ao seu alto ponto de fusão é denominado de refratário e utilizado em diversas ligas metálicas para aplicações em altas temperaturas. Além dessas propriedades, o Nb apresenta propriedades ditas supercondutoras abaixo de ~ 9.2 K, ou seja, a de apresentar estado de resistência elétrica nula e, portanto, de conduzir corrente elétrica sem perdas. Muitas ligas e compostos metálicos de Nb, como NbTi e Nb3Sn, são utilizados na fabricação de boninas supercondutoras para a produção de altos campos magnéticos, bobinas essas utilizadas desde o final da década de 50 do século passado.
O estudo aqui em perspectiva foi publicado em 08/09/2017 na revista Physical Review Materials – Phys. Rev. Materials, nova publicação da APS (American Physical Society), uma das associações de física mais importantes do mundo, e propõe que a fase cristalográfica do monoboreto de Nióbio, NbB, ao contrário do pressuposto e assumido por mais de 65 anos, não apresenta propriedades supercondutoras abaixo de aproximadamente 8,5 K. Os resultados experimentais obtidos pelos autores sugerem que a origem da supercondutividade observada em amostras de NbB está relacionada a uma outra fase cristalográfica, rica em Nb e provavelmente com composição Nb0.98B0.02, ou seja, essencialmente Nb puro. Essa fase supercondutora é observada precipitar nos chamados contornos de grãos das amostras estudadas pelos investigadores.
De acordo com a pesquisa, a supercondutividade, investigada em mais de 20 amostras de materiais com composições químicas próximas de NbB, não é oriunda desta fase e sim do metal Nb, mas com pequenas substituições de B na sua rede cristalina. O estudo também demonstrou, via diversas caracterizações estruturais, microestruturais, magnéticas, de transporte eletrônico e térmico, que a magnitude da temperatura crítica supercondutora dos materiais produzidos, similar a 9 K, é muito próxima daquela observada no elemento Nb (de ~ 9.2 K). Além desse conjunto consistente de resultados experimentais, os autores se valeram de um modelo físico para inferir que a propriedade supercondutora nos espécimes estudados seria relacionada a uma solução sólida rica em Nb com estequiometria próxima de Nb0.98B0.02 e não da fase NbB.
Segundo o professor Renato de Figueiredo Jardim, docente do Instituto de Física da USP, orientador da pesquisa que originou a dissertação de mestrado do aluno Fábio Santos Alves Abud (Supercondutividade na solução sólida (Nb1-xZrx)B, defendida em 19/08/2016) que serviu de base para o artigo científico, “a procura por novos materiais supercondutores experimentou um grande avanço a partir dos anos 40 do século passado e um dos pesquisadores importantes na descoberta desses novos materiais foi o Prof. Berndt Matthias. O seu grupo de pesquisa foi responsável pela descoberta de centenas de novos materiais supercondutores e ele uma liderança científica na área”. Ainda, segundo o professor Renato Jardim, “um dos materiais descoberto no ano de 1951 no grupo do Prof. Matthias foi o NbB (nióbio-boro), supostamente com temperatura crítica supercondutora de ~ 8,5 K. Esse material foi aquele com a maior temperatura crítica supercondutora nos chamados monoboretos de metais de transição. A fase NbB é citada como exemplo de supercondutor em livros e textos clássicos de física da matéria condensada, como as primeiras edições do “Introduction to Solid State Physics” de Charles Kittel. Adicionalmente, esses materiais a base de boro (boretos) estão sendo bastante estudados no momento, primariamente devido a descoberta no início da década passada de supercondutividade abaixo de ~ 38 K no MgB2.
O artigo “Absence of superconductivity in NbB ” está em anexo e ficará disponível no site da revista Physical Review Materials.
Assinam o artigo:F. Abud e R. F. Jardim, do Instituto de Física da Universidade de São Paulo, L. E. Correa, I. R. Souza Filho e A. J. S. Machado, da Escola de Engenharia de Lorena, da Universidade de São Paulo, e M. S. Torikachvili, do Departamento de Física, da San Diego State University, California, USA.
(Matéria de Renato de Figueiredo Jardim, do Instituto de Física, Universidade de São Paulo)