Tunable photoluminescence of CaCu3Ti4O12 based ceramics modified with tungsten

Journal of Alloys and Compounds

Tunable photoluminescence of CaCu3Ti4O12 based ceramics modified with tungsten

Abstract: CaCu3Ti4O12 (CCTO): x% W (x = 0.00, 0.02, 0.05, 0.10, 2.50, and 5.00) powders were prepared via solid-state reaction. The effect of W addition in the (micro)structure and optical properties was analyzed using computing simulations and experimental techniques. The widespread application of perovskite-light-emitting diodes (PeLEDs), photovoltaic devices, and photocatalysis is limited by the intrinsic instability of the perovskite materials (e.g., metal halides), compromising operational efficiency, and pushing for the development of novel perovskite materials. The Rietveld analysis and XPS results confirm the presence of W5+, Ti3+, and Cu+ ions in all samples of the CaCu3Ti4O12: x% W system, leading to structural changes that strongly influence the PL response of the material. Based on a correlation approach, a practical model explaining the relationship between electronic defects and photoluminescent (PL) emissions in the CCTO system is proposed. On samples x = 0.00, 0.10, and 5.00, red PL emissions are due to the presence of metal vacancies, and deep-level defects, while blue PL emissions on samples x = 0.02, 0.05, and 2.50 are associated with shallow defects. Thus, our research shows evidence that CaCu3Ti4O12 (CCTO): W ceramic systems may be promising to photonics applications.

Author(s): Moreno, H.; Cortés, J.A.; Praxedes, F.M.; Freitas, S.M.; Rezende, M.V.S.; Simões, A.Z.; Teixeira, V.C.; Ramirez, M.A.

Journal of Alloys and Compounds

Published: 5 January 2021, Volume 850, 156652

DOI: https://doi.org/10.1016/j.jallcom.2020.156652

CDMF

The CDMF, hosted at the Federal University of São Carlos (UFSCar), is one of the Research, Innovation and Dissemination Centers (RIDC) supported by the São Paulo State Research Support Foundation (Fapesp), and also receives investment from the National Council Scientific and Technological Development (CNPq), from the National Institute of Science and Technology of Materials in Nanotechnology (INCTMN).

Sobre LAbI UFSCar 2929 Artigos
O Laboratório Aberto de Interatividade para Disseminação do Conhecimento Científico e Tecnológico (LAbI), vinculado à Universidade Federal de São Carlos (UFSCar), é voltado à prática da divulgação científica pautada na interatividade; nas relações entre Ciência, Arte e Tecnologia.