Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence

Chemical Engineering Journal

Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence

Abstract: Herein, stable activator-free photoluminescent nanoparticles based on amorphous calcium phosphate (ACP) were obtained for the first time, and their performance for latent fingerprint imaging was investigated. ACP nanoparticles with irregular rounded shape and diameters in 10–40 nm range were prepared by a rapid and simple chemical precipitation followed by heat treatment at 400 °C for 4 h. Notably, diffuse reflectance spectroscopy, photoluminescence excitation and emission measurements reveal a high density of localized energy states within the wide optical band gap of heat-treated ACP (Eg = 5.25–5.42 eV). This behavior allowed the excitation of ACP in near-ultraviolet region (λexc = 450 nm, 2.75 eV), leading to an intense defect-related broadband (490–890 nm) photoluminescence emission centered at 540 nm (2.30 eV), 50 times more intense than untreated nanoparticles. The effect of lattice shrinkage due to structural water elimination, the presence of ionic vacancies (VCa and VO in ) and carbonate groups , on the luminescent properties of ACP were discussed in detail, as well as investigated after aqueous-mediated ACP crystallization into hydroxyapatite (HA). ACP nanoparticles were non-cytotoxic, as determined by MTT assay in Human Dermal Fibroblast neonatal (HDFn) cell line, with cell viabilities superior to 95% in all tested concentrations (20–320 μg/mL), after incubation for 24 and 48 h. Latent fingerprint images were obtained using the ACP nanoparticles under near-ultraviolet irradiation (λexc = 450 nm) in tweezers and LCD smartphone and successfully validated by the Integrated Automated Fingerprint Identification System used by Scientific Police in Spain. The present results evidenced that the new luminescent ACP nanoparticles are safe to be used and agree with the forensic requirements for future legal actions.

Author(s): Machado, T.R.; Silva, J.S.; Miranda, R.R.; Zucolotto, V.; Li, M.S.; Yuso, M.V.M.; Guerrero-González, J.J.; Rosa, I.L.V.; Algarra, M.; Longo, E.

Chemical Engineering Journal

Published: 1 September 2022, Volume 443, 136443

DOI: https://doi.org/10.1016/j.cej.2022.136443

CDMF

The CDMF, hosted at the Federal University of São Carlos (UFSCar), is one of the Research, Innovation and Dissemination Centers (RIDC) supported by the São Paulo State Research Support Foundation (Fapesp), and also receives investment from the National Council Scientific and Technological Development (CNPq), from the National Institute of Science and Technology of Materials in Nanotechnology (INCTMN).

Sobre LAbI UFSCar 2838 Artigos
O Laboratório Aberto de Interatividade para Disseminação do Conhecimento Científico e Tecnológico (LAbI), vinculado à Universidade Federal de São Carlos (UFSCar), é voltado à prática da divulgação científica pautada na interatividade; nas relações entre Ciência, Arte e Tecnologia.